Splitting methanol on ultra-thin MgO(100) films deposited on a Mo

substrate

Zhenjun Song,^{ab} Hu Xu^a

^aDepartment of Physics, Southern University of Science and Technology, Shenzhen 518055, China

^bDepartment of Chemistry, Nankai University, Tianjin 300071, China.

Figure S1. Potential energy profiles for the dissociation pathway of methanol $(A \rightarrow D)$ on the stoichiometric MgO(100) surface at DFT and DFT-D3 theoretical levels.

Table S1. C	alculated bond len	ngths and surf	face rumplings of	the <i>n</i> MgO	layer of					
methanol adsorbed onto the MgO(100) at DFT-D3 level. All units are set in Å.										
	Bond length		Bond length	Laver n	$\Lambda_7 a$					

	Bond length		Bond length	Layer <i>n</i>	Δz_n^{a}	
C–Om	1.43	Mgs–O1	2.24	1	0.138	
Om–H1	1.01	Mgs–O2	2.15	2	0.042	
Om–Mgs	2.18	Mgs–O3	2.08	3	0.014	
Н1…О1	1.72	Mgs–O4	2.13	4	0.014	

Figure S2. The adsorption geometries of methanol on the 1 ML MgO(100)/W(100) in the dissociative adsorption states (W-D1, W-D2 and W-D3) and the adsorption of methanol on the 1 MgO(100)/Ag(100) in the molecular form (Ag-A).