ELECTRONIC SUPPLEMENTARY INFORMATION

Chiral Organocatalysts Based on Lipopeptide Micelles for Aldol Reactions in Water

Bruna M. Soares,^a Andrea M. Aguilar,^b Emerson R. da Silva,^c Mauricio D. Coutinho-Neto,^a Ian W. Hamley,^d Mehedi Reza,^e Janne Ruokolainen,^e Wendel A. Alves^a*

^a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil.

^b Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972270, Brazil.

^c Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil.

^d Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom.

^e Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076, Finland.

*wendel.alves@ufabc.edu.br

Table of Contents	1
High Resolution Mass Spectrometry of the Lipopeptide	2
Estimation on critical concentrations by UV-Vis spectrophotometry	2
SAXS Modeling	3
Small-Angle Neutron Scattering (SANS) Data	7
DLS Assays	8
Molecular Dynamics Simulations	9
Spectroscopic and Chiral-HPLC Analysis for the Aldol Product	11
References	16

 $PRW-C_{16} - [M + H]^+$

Figure S1. High resolution mass spectrometry of PRW-C $_{16}$. Exact mass:

calculated: 681.4942; observed [M + H]+: 682.5057

Figure S2. Estimation on critical concentrations of PRW- C_{16} by UV-Vis spectrophotometry at different concentrations.

SAXS MODELING

The total scattering intensity from a sample containing a collection of identical particles is given by:

$$I(q) = N(\Delta \rho)^2 V^2 [P(q) \times S(q)]$$
(1)

where *N* accounts for the concentration of particles in the medium, *V* is related to their volume and $\Delta \rho$ is the electron contrast between particles and solvent. *P(q)* is the form factor associated to electron density profile of scatterers and *S(q)* is the structure factor describing inter-particle correlation. In the dilute regime, *S(q)* \rightarrow 1 and scattering intensities can described only by the form factor of the particles.

Spherical shell form factor:

The form factor of a homogeneous sphere is given by:^{1, 2}

$$P_{sph}(q,R) = \left| \frac{3[\sin(qR) - qRcos(qr)]}{(qR)^3} \right|^2$$
(2)

Figure S3. Scheme of the spherical shell used for deriving the core-shell model used in the fitting of SAXS data, with the respective parameters.

The form factor of a spherical shell, schematically represented in Fig. S2, is straightforwardly obtained by subtracting a spherical core with different electron density contrast:

$$P_{shell}(q, R, \Delta S, \Delta \eta_c, \Delta \eta_S) =$$

$$16\pi^{2} \left| (R + \Delta S)^{3} \Delta \eta_{S} \frac{\sin q(R + \Delta S) - qR\cos(qR)}{\left[q(R + \Delta S)\right]^{3}} - R^{3} \Delta \eta_{C} \frac{\sin(qR) - qR\cos(qR)}{(qR)^{3}} \right|^{2}$$
(3)

Mass fractal form factor:

In the case of irregular aggregates, the form factor has been described by a mass fractal geometry.^{3, 4} In this case, scattered intensities are generally given by:^{5, 6}

$$I(q) = 4\pi \int_{0}^{\infty} g(r) r^{2} \frac{\sin(qr)}{qr} dr \qquad (4)$$

where:

$$g(r) \sim r^{D-d} h(r,\xi) \tag{5}$$

D is the fractal dimension of aggregates and *d* is the spatial dimension.⁶ $h(r,\xi)$ is the so-called cut-off function and it accounts for the electron density describing the perimeter of the aggregate. In the case of the form factor used in this work, the cut-off function has been chosen to be Gaussian:^{3, 6}

$$h(r,\xi) \sim exp\left[-\left(\frac{r}{\xi}\right)^2\right]$$
 (6)

With:

$$\xi^2 = \frac{4R_g^2}{D} \tag{7}$$

Substitution of equations (5)-(7) into equation (4) leads to:⁶

$$I_{frac}(q) = exp\left[-\frac{q^2 R_g^2}{D}\right] F_1^1 \left[\frac{3 - D}{2}, \frac{3}{2} \frac{q^2 R_g^2}{D}\right]$$
(8)

Where F_1^1 is the confluent hypergeometric function of the first kind.^{7, 8}

Hard spheres structure factor:

In concentrated samples, interactions between scattering centers appear in the medium and a structure factor needs to be introduced for describing inter-particle correlations. Here, we have chosen a hard sphere structure factor considering a potential of impenetrable spheres with radius R_{HS} :

$$U(r) = \frac{\circ for \ 0 < r < R_{HS}}{0 \ for \ r > R_{HS}}$$
(9)

The model, calculated in the Percus-Yenick approximation,^{1, 9, 10} is given by:

$$S_{HS}(q, R_{HS}, f_p) = \frac{1}{1 + 24f_p \frac{G(f_p, R_{HS} q)}{R_{HS} q}}$$
(10)

In equation (10), f_p is the volume fraction of particles and G is given by:

$$G(A) = \alpha \frac{\sin(A) - A\cos(A)}{A^2} + \beta \frac{2A\sin(A) + (2 - A^2)\cos(A) - 2}{A^3} + \gamma \frac{-1}{(11)}$$

The coefficients α, β and γ are given by:

$$\alpha = \frac{\left(1 + 2f_p\right)^2}{\left(1 - f_p\right)^4} \tag{12}$$

$$\beta = -6f_p \frac{(1 + f_p/2)^2}{(1 - f_p)^2}$$
(13)

$$\gamma = \frac{\alpha f_p}{2} \tag{14}$$

Figure S4. SANS profile from a 15 mM PRW-C₁₆ solution prepared into D_2O . Parameters arising from model fitting are displayed in the figure and they exhibit correspondence with values shown in Table 1 of the main text. Fit has been made with the core-shell form factor described in Eq. (3), convoluted with the hard spheres structure factor shown in Eq. (10).

Dynamic light scattering assays were performed using a solution containing lipopeptides at a concentration of 15 mM. To overcome inter-particle interactions, and thus keep validity of the dilute model used for determining hydrodynamic radii, we introduced NaCl at a concentration of 80 mM to screen electrostatic charges responsible for inter-micelle repulsion.

Figure S5. Dynamic light scattering data from a 15 mM lipopeptide solution. Hydrodynamic radii were found averaging around 3.4 nm and polydispersity of ~ 12 %.

MOLECULAR DYNAMICS SIMULATIONS

Figure S6. Radial distribution functions (g(R)) for water (panel A) and water cyclohexanone mixtures (panel B). All g(r) were computed with respect to carbon 15 (C15) from PRW-C₁₆. C15-Pro(N) (gray) refers to the distribution related to the C15/Proline nitrogen pair, C15-Arg(NE) to C15/Arginine sidechain nitrogen pair, C15-Trp(N) (yellow) to C15/Tryptophan sidechains nitrogen pair, C15-Wat(O) (blue) to C15/Water oxygen pair and C1-C15 (red) to C1/C15 pair from PRW-C₁₆ alkyl's chain. No intra-molecular pairs were considered when computing the RDFs.

Figure S7. Radial distribution functions (g(R)) for a simulation using a water cyclohexanone mixture (simulation B). All g(r) were computed with respect to carbon 15 (C15) from PRW-C₁₆. C15-CHN (red) refers to the distribution related to the C15/cyclohexanone oxygen pair while C15-PRO(N) (gray) refers to the distribution related to the C15/Proline nitrogen pair.

Figure S8. Cyclohexanone distribution in the simulation box from simulation B after 50 ns. The cyclohexanones were drawn using a bond representation in red and in green depending on their distance from the alkyl chains. The alkyl chains were drawn using a surface representation in pink.

SPECTROSCOPIC AND CHIRAL-HPLC ANALYSIS FOR THE ALDOL PRODUCT

Figure S9. ¹H NMR spectrum of the crude aldol product (CDCl₃, 300 MHz).

Figure S10. ¹³C NMR spectrum of the aldol product (CDCl₃, 50 MHz).

(S)-2-((R)-Hydroxy(4-nitrophenyl)methyl)cyclohexan-1-one

¹**H NMR** (300 MHz, CDCl₃): δ 8.22-8.18 (m, 2H, ArH); 7.51-7.47 (m, 2H, ArH); 5.47 (br s, 1H, CHOH-syn); 4.89 (dd, J = 7.5 Hz, 3.0 Hz, 1H, CHOH-anti); 4.08 (d, J = 3.0 Hz, 1H, CHOH-anti); 3.21 (d, J = 3.0 Hz, 1H, CHOH-syn); 2.66-2.30 (m, 1H, CHCHOH); 2.66-2.30 (m, 2H, CH₂C(O)); 2.16-1.24 (m, 6H, chex-H).

¹³C NMR (50 MHz, CDCl₃): δ 214.9 (C=O); 148.5 (ArC); 147.7 (ArC); 128.0 (2 x ArCH); 123.7 (2 x ArCH); 74.1 (CHOH); 57.3 (*C*HCHOH); 42.8 (CH₂); 30.9 (CH₂); 27.8 (CH₂); 24.8 (CH₂).

Table S1. ¹H NMR C<u>H</u>OH (δ ppm) and HPLC conditions and retention times for the aldol product.¹¹

¹ H NMR (CDCl ₃ , -C <u>H</u> OH, δ ppm, <i>J</i> Hz)		HPLC			
syn	anti	Column	Eluent and Flow rate	syn t (min)	<i>anti</i> t (min)
5.47 (br s)	4.89 (dd, <i>J</i> = 7.5 Hz, 3.0 Hz)	CHIRALPAK AD-H	Hexane/2- propanol (90/10); 1.0 mL/min	17.297 (minor) 21.520 (major)	23.331 (2 <i>S</i> , 1' <i>R</i>) 30.937 (2 <i>R</i> , 1' <i>S</i>)

Diastereomeric ratio determined by ¹H NMR spectroscopic analysis

Enantiomeric excess determined by chiral-phase HPLC analysis

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Profa Andrea\Elaine\Aldol_rac.lcd

		Ĩ	=	
Data Processed	: 23/04/2015 13:05:57	0	OH	
Data Acquired	: 23/04/2015 12:25:54			
Report File Name	: Default.lcr			
Batch File Name	: batch-08out2014.lcb			
Method File Name	: Chiral_AD-H_10-90_1.0mL-min-40min-08out2014.lcm			
Data File Name	: Aldol_rac.lcd			
Injection Volume	: 1 uL			
Vail #	:1			
Tray#	:1			
Sample ID	: Aldol_rac			
Sample Name	: Aldol_rac			
Acquired by	: Admin			

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 25	4nm 4nm			eakiaole	
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.297	79314	3838	9.523	13.878
2	21.520	78611	2976	9.438	10.759
3	23.331	338095	11874	40.594	42.930
4	30.937	336857	8970	40.445	32.433
Total		832876	27658	100.000	100.000

==== Shimadzu LCsolution Analysis Report ====

	C:\LabSolutions\Data\Profa Andrea\Bruna\84(0.5) lcd
Acquired by : Ac	lmin
Sample Name : 84	(0.5)
Sample ID : 84	(0,5)
Trav# :1	
Vail # :2	
Injection Volume : 1	uL
Data File Name : 84	(0,5).lcd
Method File Name : Ch	niral_AD-H_10-90_1.0mL-min-40min-08out2014.lcm
Batch File Name : ba	tch-08out2014.lcb
Report File Name : De	efault.lcr
Data Acquired : 23	/04/2015 13:06:21
Data Processed : 23	/04/2015 13:46:26

<Chromatogram>

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 25	1 254nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.276	65605	3188	3.045	5.226
2	21.488	133506	4995	6.196	8.190
3	23.317	142057	5000	6.593	8.197
4	30.885	1813616	47814	84.167	78.387
Total		2154784	60996	100.000	100.000

REFERENCES

- 1. J. S. Pedersen, Adv. Colloid Interface Sci., 1997, 70, 171-210.
- 2. T. Zemb and P. Lindner, *Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter*, Elsevier, Amsterdam, 2002.
- 3. G. Beaucage, J. Appl. Crystallogr., 1996, **29**, 134-146.
- 4. J. Teixeira, J. Appl. Crystallogr., 1988, 21, 781-785.
- 5. I. Bressler, J. Kohlbrecher and A. F. Thünemann, *J. Appl. Crystallogr.*, 2015, **48**, 1587-1598.
- 6. C. M. Sorensen and G. M. Wang, *Phys. Rev. E*, 1999, **60**, 7143-7148.
- 7. M. Abramowitz and I. A. Stegun, *Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Dover Publications, New York, 1965.
- 8. E. Butkov, *Mathematical Physics*, Addison-Wesley Publishing Company, Reading-Massachusetts, 1968.
- 9. D. J. Kinning and E. L. Thomas, *Macromolecules*, 1984, **17**, 1712-1718.
- 10. J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1-13.
- 11. N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas, III, *J. Am. Chem. Soc.*, 2006, **128**, 734-735.