Electronic Supplementary Information

W:BiVO₄ /BiVO₄ graded photoabsorbers on WO₃ mesoporous electrode for enhanced photoelectrocatalytic solar light driven water oxidation

Junghyun Choi,^{a‡} Pitchaimuthu Sudhagar,^{b‡} Joo Hyun Kim, ^a Jiseok Kwon, ^a Jeonghyun Kim,^a Chiaki Terashima,^b Akira Fujishima, ^b Taeseup Song, ^{c*} and UngyuPaik^{a*}

^aDepartment of Energy Engineering, Hanyang University, Seoul 133-791, Korea

^b Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

^cSchool of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749, Korea

S1. Raman Spectra

Figure S1. Raman spectra of $BiVO_4$ and $W:BiVO_4$.

S2. SEM with EDS mapping

Figure S2. Cross sectional SEM images of WO₃/W:BiVO₄/BiVO₄ electrode.

Figure S3. JV plots of different photoanodes assited PEC cells (measured at dark conditions).

S4. Photoelectrochemical experiments

Figure S4. J-V plot of different photoanodes measured in the 0.5 M potassium phosphate electrolyte with presence (dotted line) and absence of Na_2SO_3 (solid line) hole scavenger (a) single photoabsorbers and (b) hetero and multinary $WO_3/BiVO_4$ photoabsorbers.

From Figure S4 (a) and (b), the photocurrent of the sulfide oxidation is higher than the water oxidation due to efficient hole scavenging from photoanode surface to the electrolyte.^{1, 2} Interestingly, W doped BiVO₄ electrode shows higher sulfide oxidation due to enhanced charge separation from electrode surface to electrolyte species (**Figure S4a**). The BiVO₄ and

 $W:BiVO_4$ photoabsorber layer coated onto WO_3 backbone layer result higher sulfite oxidation (Figure S4b) compared to directly coated onto conducting substrate.

Further comparing the sulfite oxidation performance in between the BiVO₄ and W:BiVO₄ photoabsorbers coated WO₃ photoanodes under identical coating conditions (i.e 1 and 2 coating cycles of secondary photoabsorbers) the photocurrent showed less difference between WO₃/BiVO₄ and WO₃/W:BiVO₄ (~2.4- 2.8 mAcm⁻² at 0.6 V vs Ag/AgCl). This explain that there is no significant optical absorbance enhancement effect in W:BiVO₄ layer compare to pristine BiVO₄ towards sulfite oxidation. Interestingly, after inserting the W:BiVO₄ interfacial layer at WO₃/BiVO₄ photoanode, it results significantly higher photocurrent ~3.6 mAcm⁻² at 0.6 V vs Ag/AgCl than the WO₃/BiVO₄ and WO₃/W:BiVO₄ photoanodes. Here the coating quantity of WO₃/BiVO₄ and WO₃/W:BiVO₄ electrodes are similar to WO₃/ W:BiVO₄ /W:BiVO₄ cascade layer. This ensures the charge separation process induced water oxidation process takes place at WO₃/ W:BiVO₄ /W:BiVO₄ cascade structure.

Figure S5. Phototransient plots of different photoanode based PEC cells (the measurements were recorded at 0.7 V vs Ag/AgCl applied potential, 0.5 M Na₂SO₄ electrolyte is used).

S6. Impedance analysis

Figure S6. Nyquist spectra of $WO_3/BiVO_4$ and $WO_3/W:BiVO_4$ electrodes at 1 M Na_2SO_4 electrolyte. Note that the measurements were recorded under light irradiation 100 mWcm⁻².

The **Figure S6** depicts the Nyquist plots of $BiVO_4$ and W doped $BiVO_4$ photoabsorber layer identically coated onto WO_3 layers. Though the thickness of both photoabsorber layers are identical (2 coating cycles), the W doped $BiVO_4$ layer exhibit less charge transfer resistance. This is attributed to enhanced conductivity of BiVO4 by W doping carriers as is explained in the main text.

References:

- 1. T. W. Kim and K.-S. Choi, *Science*, 2014, 343, 990-994.
- 2. T. W. Kim, Y. Ping, G. A. Galli and K.-S. Choi, *Nature Communications*, 2015, 6, 8769.