### Supporting Information

# The Effects of Varying Solvent for MoS<sub>2</sub> Treatment on its

## Catalytic Efficiencies for HER and ORR

Xing Juan Chua<sup>†</sup> and Martin Pumera\*<sup>†</sup>

<sup>†</sup>Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore and

\*Email: pumera@ntu.edu.sg

#### **Supporting Information**

### Contents

- Scanning electron micrograph showing the surface morphologies of the deposited MoS<sub>2</sub> dispersed in various solvents.
- Values of the observed heterogeneous electron transfer (HET) rates, k<sup>0</sup><sub>obs</sub>, of MoS<sub>2</sub> dispersed in various solvent.
- 3. Control Experiment using solvent-only modified GCE for HER
- 4. Tafel Plots of the Freshly-Prepared  $MoS_2$ -Dispersion.

1. <u>Scanning electron micrograph showing the surface morphologies of the</u> <u>deposited MoS<sub>2</sub> dispersed in various solvents.</u>



Figure S1: SEM images of MoS<sub>2</sub> drop-casted on the silicon oxide wafer. The aliquots were taken from MoS<sub>2</sub> dispersed in various solvents: (a) ACN (5mg/mL; 1μL), (b) DMF (5mg/mL; 1μL), (c) EtOH (5mg/mL; 1μL), (d) MeOH (5mg/mL; 1μL) and (e) water (1mg/mL; 5μL). Scale bars represent 100 μm. Legend: (*X* mg/mL, *Y* μL), *X* refers to the concentration of the dispersion and *Y* refers to the volume used for drop-casting, with the final MoS<sub>2</sub> loading being constant.

### 2. <u>Values of the observed heterogeneous electron transfer (HET) rates, $k^{\theta}_{obs}$ , of</u>

#### MoS<sub>2</sub> dispersed in various solvent.

**Table S1:** Calculated observed heterogeneous electron transfer rate constant  $k^0_{obs}$  for the Fe(CN)<sub>6</sub><sup>3-/4-</sup> redox probe when MoS<sub>2</sub> is dispersed in various solvents. Bare glassy carbon electrode (GCE) is also shown for reference.

| Solvent         | $k^{\theta}_{obs}$ (cm s <sup>-1</sup> ) |
|-----------------|------------------------------------------|
| ACN             | 2.99 × 10 <sup>-3</sup>                  |
| DMF             | $5.90 	imes 10^{-4}$                     |
| EtOH            | $3.53 \times 10^{-3}$                    |
| MeOH            | $2.74 \times 10^{-3}$                    |
| Water           | $1.88 \times 10^{-3}$                    |
| <b>Bare GCE</b> | $3.20 \times 10^{-3}$                    |





**Figure S2:** The control experiment for the HER where only solvents (without any material suspended) were drop-casted on bare GCE. (a) Polarization curve for HER and (b) the bar chart shows the overpotential required to reach the specific current density of -10 mA cm<sup>-2</sup>. Conditions: 0.5 M H<sub>2</sub>SO<sub>4</sub>; scan rate: 2 mV s<sup>-1</sup>. Error bars correspond to standard deviations

based on triplicate measurements. Potentials are with respect to RHE.

#### 1 1 (b) (a) 0.5 0.5 **Overpotential (V)** DMF EtOH 0 0 -2 0 2 -2 0 2 1 1 (c) (d) 0.5 0.5 MeOH Water ACN 0 0 -2 0 2 -2 2 0 Log<sub>10</sub> |Current Density (mA cm<sup>-2</sup>)|

#### 4. Tafel Plots of the Freshly-Prepared MoS<sub>2</sub>-Dispersion.

Figure S3. The Tafel plots of the freshly prepared dispersions of  $MoS_2$  in the five solvents. DMF, EtOH and water were separated to ensure clarity.