Supporting Information

for

Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by ²H MAS NMR

Erik L. Lindh^{a,b,c,\ddagger}, Camilla Terenzi^{$a,b,\ddagger,\uparrow,*$}, Lennart Salmén^{b,c} and István Furó^a

^aDivision of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

^bWallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

^cInnventia AB, Box 5604, SE-114 86 Stockholm, Sweden

The different salts, used for creating the different humidities, are listed in Table S1.

Table S1. The different inorganic salts used to prepare the saturated salt solutions with different relative humidities, both literature data^{1, 2} and own measurements.

Salt	RH	RH (measured)	Vendor	Purity
MgCl ₂	33-34%	32-35%	Merck	≥98%
NaBr	65%	57-59%	Kebo	≥99%
NaCl	76-78%	75-76%	Merck	≥99.5%
KNO ₃	94-96%	91-93%	Sigma-Aldrich	≥99%

In Table S2 the set of delays used for the two inversion-recovery ²H QE NMR measurements are presented, and the delays corresponding to the selected spectra shown in Fig. 2 are also highlighted.

Table S2. The different delays of the inversion-recovery ²H QE NMR spectra, spectra shown in Figure 2 are marked with *.

Delay times (s)			
Dry	Hydrated (93% RH)		
0.00023*	0.00017*		
0.000529	0.000289		
0.001217	0.000491		
0.002798*	0.000835		
0.006436*	0.00142*		
0.014804*	0.002414		
0.034048*	0.004103*		
0.078311*	0.006976		
0.180115	0.011859*		
0.414265*	0.02016*		
0.95281	0.034272*		
2.191462*	0.058262*		
	0.099046		
	0.168378*		
	0.286242		
	0.486612*		
	0.82724		
	1.406308		
	2.390724		
	4.064231*		

The phase cycle used for the QE-based ²H T₁ measurements was: $\varphi(180^\circ) = \{x, -x\}; \varphi(90^\circ) = \{x, x, x, x, -x, -x, -x\}; \varphi(90^\circ) = \{y, -y, x, -x, -y, y, -x, x\}; \varphi_{rec} = \{x, x, -x, -x, y, y, -y, -y\}.$

Fig. S1. The spectra presented in Fig. 4, but magnified to provide good visibility of the SSB manifolds.

References:

- 1. L. Greenspan, J. Res. Natl. Bur. Stand., Sect. A, 1977, 81, 89-96.
- 2. Y. Kou and S. J. Schmidt, Food Chem., 1999, 66, 253-255.