Electronic Supplementary Information

Table S1. Calculation of agglomeration in Immunoassay test (experiment 5, blank, Au NPs 60 nm on Au film, total area $36 \,\mu\text{m}^2$).

Nº	Nm	Nd	Nt	Na*	Number of NPs in agglomers	Agglo- meration, %	Total number of NPs	Total number of NPs per 1 μm ²
1	37	13	2	6	27	61	96	2.7
2	39	12	3	8	76	74	148	4.1
3	24	7	3	11	64	78	111	3.1
4	40	6	5	3	18	53	85	2.4
5	22	9	2	4	38	74	84	2.3
Mean	32	9	3	6	45	68	105	2.9
Mean, %	30.4	8.57	2.85	5.71	42.8	64.7	100	

*Na – number of agglomerates.

Table S2. Calculation of agglomeration in Immunoassay test (Experiment 5, MPT64 0.8 nM, Au NPs 60 nm on Au film, total area $36 \mu m^2$).

N⁰	Nm	Nd	Nt	Na	Number of NPs in agglomers	Agglo-meration, %	Total number of NPs	Total number of NPs per 1 μm ²
1	111	23	13	10	61	57	257	7.1
2	146	23	10	10	53	47	275	7.7
3	122	37	12	14	81	61	313	8.7
4	144	24	7	14	86	52	299	8.3
5	101	28	18	13	77	65	288	8.0
Mean	125	27	12	12	71	54	286	7.9

Table S3. Surface roughness of the substrates as determined by AFM

Surface	Au film	Ag film	Si wafer	Al film	
Mean value, nm	2.82	3.58	3.87	3.23	
RSD, %	17.4	8.02	3.19	12.6	

			1						
		NPs,	Ibg/Im/Id/I	Id/Im,	It/Im,	EFm	EFd	EFt	Nm/
		Dnm	/lt	Standa	Stan-	x10 ⁶	x10 ⁶	x10 ⁶	Nd/
Experi-			cps,	rd error	dard	mean,	mean,	mean,	Nt
ment №,	Substrate		(norm.to	iu choi	error	max,	max,	max,	
analyte			to 1 mW	I	3G	min	min	min	
5			laser	con	rected				
			power)						
1,		Au,	15/1013/	2.84,		10.9	15.5		15/
2-MOTP	Au	80	2848/-	0.53		17	29		10/-
						2.6	6.5		
1,		Au,	14/1081/	3.42.		11.7	20.0		10/
2-MOTP	Ag	80	3670/-	0.60		17	31		10/-
	0			0.00		7.6	6.3		
2.		Ag.		3 04		5.0	7.6		33/
2-A TP	Au	100	9/2128/	0.48		16.2	13.7		18/-
2	114	100	6446/-	0.40		1.2	3.1		10/
2		Δα	8/073/	266	6.54	2 2	2.0	47	18/
2, 2 A TD	A 1	100	2445/	2.00,	1.5	1 3	2.9	16.5	15/
2-A11	AI	100	244 <i>3/</i> 5007	0.5	1.5	4.5	8.0 1.2	10.5	10/
			3997	2.20		0.58	1.2	1.3	18
2,		Ag,	12/10376/2	2.20,		24	27		40/
2-ATP	Ag	100	2757/-	0.27		60	114		28/-
			10/100/			3.7	15		10/
3,		Au,	10/120/	2.93,	5.05	0.7	1.1	1.2	40/
2-ATP	Au	60	333/564	0.34	1.66	3.0	1.5	3.6	22/
						0.14	0.7	0.41	8
3,		Au,	20/399/	3.33,		2.5	4.1		22/
2-ATP	Ag	60	1283/-	0.50		3.9	8.2		14/-
						1.2	1.5		
3,		Au,	8/14.1/	9.55,	13.7	0.043	0.20	0.20	28/
2-ATP	Si	60	70.0/97.1	0.44	0.437	0.057	0.4	0.24	23/
						0.033	0.098	0.15	6
4, (532)		Au,	19/43.9/	2.26,		0.011	0.012		20/
4-NBT	Au	60	76.5/-	0.24		0.014	0.023		19/-
hIgG*						0.006	0.007		
4,		Au,	9/1048/	2.35.		0.44	0.51		20/
4-NBT	Au	60	2403/-	0.28		0.76	0.94		12/-
hIgG				0.20		0.29	0.22		
5		Au	8 5/15 4/	107	148	0.003	0.16	0.14	15/
4-NBT	Si	60	753/1028	12	13.8	0.004	0.62	0.29	25/
MPT64	51	50	,00,1020	12	10.0	0.002	0.016	0.03	10
5		A11	12/1039/	2 49		0.44	0.5	5.00	33/
4-NRT	A 11	60	2577/-	0.30		0.94	15		17/-
MPT64	110	00	23111-	0.39		0.74	0.25		1//-
5		Δ.11	21/210/	2 1 2		0.71	0.23		17/
J,	٨~	Au,	21/010/	J.12 ,		0.34	1.54		1//
4-INBI, MDT44	Ag	00	2491/-	0.48		0.70	1.0		13/-
IVIP 104	ļ		10/05/	2.1-	5.04	0.18	0.19	12120	1.0
6,		Au,	10/95/	3.15,	5.94	6625	10463	13139	16/
2-MOTP	Au	80	277/ 513	0.57	1.09	13201	27107	21001	18/
InM **	<u> </u>		10/10			3101	3953	8131	5
7,		Au,	13/1200/	2.86		0.25	0.35		15
4-NBT	Au	100	3411	0.38		0.35	0.53		8
				<u> </u>		0.13	0.20		

Table S4. Characteristics of the obtained samples (mean calculated values).

Total of 615 nano antennas : monomers 342, dimers 226, trimers 47.

* Laser wavelength 532 nm ** assuming that each AuNPs covered with 14 molecules of 2-MOTP as calculated

NPs	Gap, TEM, nm (±Standard error, nm)	N gaps
AuNPs, 60 nm in ERL, 4-NBT, dimers	3.1±0.6	15
AuNPs, 60 nm in ERL, 4-NBT, all agglomerates	3.5±0.5	38
AuNPs 60 nm, 4-ATP, dimers	1.1±0.3	16
AuNPs, 60 nm, 4-ATP, all agglomerates	1.0±0.2	42
AuNPs, 80 nm, 2-MOTP, dimers	0.8±0.2	15
AuNPs, 80 nm 2-MOTP, all agglomerates	0.8±0.2	30

Table S5. Mean values for distance between NPs (Gap) calculated from TEM data.

Table S6. The values of SD and SEM (standard error of mean) for SERS intensities.

Experiment N, analyte	Sub- strate	NPs, nm	SD, for monomers, %	SEM for monomers, %	SD for dimers, %	SEM for dimers, %
1) 2MOTP	Au	Au, 80	41.8	7.52	42.7	9.33
1) 2MOTP	Ag	Au, 80	43.4	12.6	54.9	14.2
2) 2-ATP	Au	Ag, 100	50.6	10.3	41.1	9.70
2) 2-ATP	Al	Ag, 100	44.9	10.6	60.5	15.6
2) 2-ATP	Ag	Ag, 100	53.0	9.33	42.6	8.05
3) 2-ATP	Au	Au, 60	36.8	7.41	20.9	4.47
3) 2-ATP	Ag	Au, 60	29.8	6.35	47.4	12.6
3) 2-ATP	Si	Au, 60	13.2	2.49	40.7	8.49
4) 4-NBT*(532) hIgG	Au	Au, 60	28.6	6.41	36.9	8.26
4) 4-NBT hIgG	Au	Au, 60	30.6	7.96	35.8	10.3
5) 4-NBT, MPT64	Si	Au, 60	15.2	3.92	111	22.3
5) 4-NBT, MPT64	Au	Au, 60	42.1	7.33	57.4	13.9
5) 4-NBT, MPT64	Ag	Au, 60	40.1	9.72	47.6	12.3
6) 2MOTP 1nM**	Au	Au 80	46.7	11.6	65.9	15.5

Enhancement factor calculations

 $EF = (I_{SERS}/I_{Raman})(N_{SERS}/N_{Raman}) = (I_{SERS}/I_{Raman})(N\nu_{BULK} V_{Laser}/C_S)$

In Experiment 1 (AuNPs 80 nm/ Au film)

EF (monomer) = (795/171.4)(100500/1.88E+11) = 9.44E+06

 $N_{Raman} = (density (g/ml)*Avogadro's number/Molar mass 2-MOTP)* V_{Laser} (\mu m^3)/10^{12} (\mu m^3/ml) = 0.000 \text{ m}^{-1}$

1.88E+11, Here density(g/ml) =1.152, FM= 140.2 g/mole

 $N_{Raman} = (1.152 * 6.02E+23 / 140.2) * 38 / 1E+12 = 1.88E+11$

 $N_{SERS} = NPs$ Surface area (nm²)/ MOTP Surface cross section (nm²) = 2.01E+4/0.2 = 100.5x 10³ molecules/NP., where NPs Surface area (nm²) = 4*pi*(Radius NPs nm)² 4*3.14*40² = 2.01E+4 (nm²), 0.2 nm² is surface cross section of 2-MOTP.

In Experiment 1 for dimer: EF (dimer) = (2258/171.4)(201000/1.88E+11) = 1.23E+06. where N_{SERS} = 2*100500.

Experiments 2 to 5 follow the same procedure using very conservative assumption for EF calculation (monolayer coverage with thiol molecules).

In Experiment 6:

EF (mean for monomers) = (94.5/171.4)(14.01/1.88E+11) = 6.63E+9

 $N_{SERS} = 14.01$ molecules per one NP, $N_{SERS} =$ number of analyte molecules per one NPs = N molecules analite per nm² (on NPs and on Substrate) / One NPs Surface area (nm²) = 6.94E-4 / 2.01E+4 = 14.01 One NPs Surface area (nm²) = 4*pi*(Radius NPs nm)² 4*3.14*40² = 2.01E+4 (nm²)

N molecules of analyte per nm² (NPs+ Substrate) = N molecules analyte in drop / (NPs Surf in drop and Substrate Surface nm²) = 1.51E+10 / 2.16+13 = 6.97E+4

NPs Surf in drop and Substrate Surface $(nm^2) = All$ NPs Surface area in drop $(nm^2) + Substrate$ Surface area $(nm^2) = 1.96E+12 + 1.96E+13 = 2.16+13$

Substrate Surface area (nm2) = $1.96E+13 = pi R^2 = 3.14*2500000^2$

All NPs Surface area in drop (nm2) = 1.96E+12 = One NPs Surface area (nm2) * Number NPs in drop = 2.01E+4*9.75E+7 = 1.96E+12

N NPs in the drop = 9.75E+7 = V drop NPs per L * concentration, particles/L = 2.5E-5 * 3.9E+12

Example and order of combining Raman signal map and AFM map for Ag NPs 100 nm on Al substrate in experiment 2. Original files (Origin 2015 and Aist-NT SPM) can be downloaded from: https://www.dropbox.com/sh/7zpavdfitarpvbp/AAC7yWdfoUxZ2FkcbqUu0wUsa?dl=0

Fig. S1 Screen photo (objective x10) before recording Raman map, in the center of this photo smaller maps (using objective x100) were recorded.

Fig. S2 Screen photo (objective x10) before recording Raman map (100x100 μm,), in the same place as AFM map.

Fig. S3 Screen photo (objective x100) before recording Raman map (100x100 µm), in the same place as AFM map.

Fig. S4 SERS signal determination from nanoparticles, (Raman intensity map $100x100 \mu m$, step 0.5 μm), places marked by squares where AFM maps $20x20 \mu m$ have been recorded.

Fig. S5 Screen photo of AFM map, 100x100 µm in same place where Raman intensity map was recorded.

Fig. S6 Screen photo of AFM map 100x100 µm, that was used as mask for recording AFM maps 20x20 µm.

Fig. S7 Screen photo of one of 17 AFM maps 20x20 µm that were recorded using AFM map 100x100 µm as mask.

Fig. S8 Screen photo of one dimer (Ag NPs 100nm) on AFM map (20x20µm)

Fig. S9 Screen photo of one trimer (Ag NPs 100nm) on AFM map (20x20µm)

Example and order of combining Raman signal maps and AFM maps for Au NPs 60 nm on Si substrate in experiment 5. Original files (Origin 2015 and Aist-NT SPM) can be downloaded from: https://www.dropbox.com/sh/7zpavdfitarpvbp/AAC7yWdfoUxZ2FkcbqUu0wUsa?dl=0

Fig. S10 – Screen photo (objective x10) before recording Raman map, in the center of this photo smaller maps (using objective x100) were recorded.

Fig. S11 Screen photo (objective x100) before recording Raman map 100x100 μm, in the same place as AFM map 100x100 μm.

Fig. S12 Raman intensity map $100x100 \ \mu m$ (step 0.5 μm) for SERS signal determination from AuNPs 60 nm on Si, places marked by red squares where AFM maps $20x20 \ \mu m$ have been recorded

Fig. S13 Screen photo of one of the AFM maps $20x20 \ \mu m$ that were recorded using AFM map $100x100 \ \mu m$ as mask.

Fig. S14 Screen photo of AFM map 100x100 μm , (corresponded to Raman map), that was used as mask for recording AFM maps 20x20 μm

Fig. S15 Screen photo of one of 16 AFM maps $20x20 \ \mu m$ that were recorded using AFM map $100x100 \ \mu m$ as mask experiment 5; Sample: dim151204_T4

Fig. S16 Screen photo of dimer on AFM map (20x20µm), experiment 5; Sample: dim151204_T4

Fig. S17 Screen photo of two dimers on AFM map (20x20µm), experiment 5; Sample: dim151204_T4

Fig. S18 Screen photo of trimer on AFM map (20x20µm), experiment 5; Sample: dim151204_T4

Fig. S19 Screen photo of trimer on AFM map (20x20µm), experiment 5; Sample: dim151204 T4

Fig. S20 Determination of the particle size and the distance between NPs (Gap), (A) using AIST-NT Software, (B) using TEM and calculation of mean hot spot cross section (S) between two NPs in dimers calculated from the length L (diameter) of the contact zone between NPs.

Here the interparticle gap is calculated from AFM cross section (on the right) as the difference in x-coordinates of two peaks for each nanoparticle minus the sum of heights of each nanoparticle. Under spherical approximation each height is assumed to be equal to the diameter of each nanoparticle.

UV-vis absorption spectra of prepared sols of NPs.

Fig. S21 UV-vis absorption spectra of prepared sol of Ag NPs 100 nm.

Measuring of particles size distribution in suspension using dynamic light scattering (DLS).

Fig. S23 Size distribution by intensity for suspension Au NPs 60 nm.

Fig. S25 (A, B) - TEM photo of Au NPs (60 nm) used in immunoassay as ERL on TEM grids.

More NPs TEM photos can be downloaded from: <u>https://www.dropbox.com/sh/7zpavdfitarpvbp/AAC7yWdfoUxZ2FkcbqUu0wUsa?dl=0</u>

Table S7. Datasheet for Experiment One (remade with 10% power) observing 2-MOTP modified AuNPs and AgNPs (80 nm) on Au and Ag film.

AuNPs 80n	Hight(Av		AuNP 80n	Hight(Av	
m Au	erage)	Intensity	m Ag	erage)	Intensity
M1	77	384	M1	58	288
M2	64	775	M2	76	740
M3	57	125	M3	70	354
M4	76	371	M4	72	655
M5	56	135	M5	58	871
M6	77	667	M6	68	409
M7	66	384	M7	71	441
M8	76	329	M8	71	355
M9	76	820	M9	63	807
M10	85	404	M10	61	595
M11	77	836	D1	70	1024
M12	75	230	D2	78	2249
M13	83	719	D3	85	2932
M14	101	848	D4	70	2370
M15	84	726	D5	65	2539
D1	75	1363	D6	72	2088
D2	80	1408	D7	85	589
D3	78	2049	D8	103	1685
D4	80	2744	D9	77	1024
D5	58	610	D10	60	2222
D6	70	1154			
D7	73	1275			
D8	93	825			
D9	80	1825			
D10	70	1275			
Substrate	Go	old		Sil	ver
AuNPs_80n			AuNPs_80		
m_Au	MON	DIM	nm_Ag	MON	DIM
NPs	15	10	NPs	10	10.00
INTENSITY	516	1452	INTENSITY	551	1872
STDEV	262	617	STDEV	210	764
Background	7.5			5.4	
I BG corrected	509	1445		546	1866
Signal per					
1mW	807	2269		861	2925
Signal per					
1mW BG					
corrected, I	795	2258		853	2916
Enhancment	8 70E+06	1 23E+07	Enhancment	0 30E+06	1 60F+07
Conclusion	0.702100	Gold		Silver	1.002.07
Conclusion		0014		JIVCI	
I SERS dime	ar/I SERS				
mono	mor	2 8/		3	12
		2.04		J.	74

Fig. S27 AFM image AuNPs_80 nm /Au film (experiment One data in Table S6). Monomers are circled in green color, dimmers are circled in black color. This area will be shown on Raman map on the next page

Figure S28. Raman map image (performed by ORIGIN PRO2016) AuNPs_80/Au from Experiment One. Zoomed AFM image is shown on Fig. S27. Monomers are circled in green color, dimmers are circled in black color.