Supplementary Information

Enhanced hydrogen sorption in Li-Mg-N-H system by synergistic role of

Li₄(NH₂)₃BH₄ and ZrFe₂

Vivek Shukla^{*a*}, Ashish Bhatnagar^{*a*}, Pawan Soni^{*a*}, Alok K.Vishwakarma^a, M A Shaz^{*a*}, T P Yadav^{*a*}, O N Srivastava^{*a**}

^aHydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India

Corresponding author: email: <u>heponsphy@gmail.com</u>

<u>S1</u>

During the dehydrogenation of TT L-M and TT L-M-B-Z sample, the gaseous products were analyzed by Gas Chromatography (GC) using two types of columns i.e. Carbosphere and Chromosorb Columns (Fig-S4 (i-iv)). In the Carbosphere column, only H_2 and N_2 can be detected, however in Chromosorb column both H_2 and NH_3 can be detected. It has been found from GC measurement that TT L-M contains, H_2 and NH_3 whereas TT L-M-B-Z sample contains 99.90 % of H_2 were detected and the peak that of NH_3 is not discernible. These results suggest that LiBH₄ added sample suppresses the NH_3 liberation during dehydrogenation.

Figure. S1 Gas chromatography (GC) measument using Carbosphere and Chromoasorb coluomns (i-ii) Detection of pure H_2 in Chromosorb coloumn (iii-iv) Detection of evovled gases on the dehydrogenation of TT L-M-B-Z sample in Chromosorb coloumn.

Figure. S2 Storage capacity upon cycling (180°C and 7 MPa) of catalysed TT L-M-B-Z composite.

Page | 3

<u>S.3</u>

Synthesis of $Li_4(NH_2)_3BH_4$ and it's effect on hydrogen sorption in 2 $LiNH_2$ -1.1MgH₂-0.1Li₄(NH₂)₃BH₄

The synthesis of Li₄(NH₂)₃BH₄ has been done by ball milling of LiNH₂ and LiBH₄ in ratio of 3:1 for 20 hours at 200 rpm under 1MPa H_2 pressure. The ball milled material have been characterized by XRD, which shows that the synthesized material is Li₄(NH₂)₃BH₄. Afterwards the as synthesized material $(Li_4(NH_2)_3BH_4)$ was mixed with LiNH₂-MgH₂. The molar ratio of LiNH₂:MgH₂: Li₄(NH₂)₃BH₄ (L-M-Q) was taken to be 2:1:0.1 . Ball milling of L-M-Q was done for 10hrs at 200 rpm under 1 MPa of H₂ pressure. Fig.S2(i-a) depicts the XRD of ball milled LMQ which shows dominant presence of LiNH₂ and MgH₂ with some weak peaks of Mg(NH₂)₂ .After thermal treatment (200°C and 7MPa H₂ pressure) of L-M-Q sample (TT L-M-Q), it was observed that (Fig. S2(i-b)) peaks of LiNH₂ and MgH₂ were present together with some less intense peaks of Mg(NH₂)₂/LiH, which indicates that LiNH₂ and MgH₂ remains mainly unreacted even after annealing. On the other hand, in case of in-situ formed quartenary hydride catalyzed Li-Mg-NH system (TT-L-M-B), there is almost complete formation of Mg(NH₂)₂/LiH (phase having reversible H₂ storage) even after ball milling. Fig.S2(ii) displays the TPD curve of TT L-M-Q composite where the onset desorption temperature is $\sim 200^{\circ}$ C with total release of 5.50wt.% H₂ up to 350°C. However in case of TT-L-M-B the onset desorption temperature is 150°C with a total release of 5.20 wt.% H_2 up to 300°C.

<u>S4</u>

Figure S4 Transmission Electron Micrograph of (a) L-M-B-Z sample (b) Selected area diffraction pattern (SAED) of L-M-B-Z sample (c) After cycling TT L-M-B-Z (d) Selected area diffraction pattern (SAED) of after cycled TT L-M-B-Z sample.