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1. FREE POLYMER CHAIN IN WATER

For the purposes of determining the contour length and
the end-to-end distance of a free PNIPAM chain, we
perform simulations of an non-replicated PNIPAM chain
consisting of N = 20 monomer units, solvated by 10,500
water molecules in a cubic simulation box with a size
of ∼7 nm. The simulations are produced in canonical
constant-pressure (NPT) ensemble with a duration of
100–200 ns (of which 10 ns are used for equilibration)
at different temperatures.

1.1. Contour length. We define the contour length Lc
of the polymer segment as the sum over the distances be-
tween adjacent chiral carbon atoms in the backbone ( cor-
responds to the distances between adjacent monomers),
Lc =

∑
i |ri+1 − ri |. Here, ri represent the successive

positions of the chiral carbon atoms in the backbone.
The evaluated average distance between adjacent
monomers at T = 300K is ∆Lc = 0.266 and 0.264 nm for
isotactic and syndiotactic polymers, respectively. Since
the 20-monomers-long non-replicated chains have 19
bonds, this corresponds to the total contour length of
Lc = 19∆Lc = 5.05 and 5.02 nm, respectively. How-
ever, in the case when the chains are periodically repli-
cated, as in our study (Fig. 1b), the simulation box con-
tains 20 bonds, which leads to the contour lengths of
Lc = 20∆Lc = 5.32 and 5.28 nm, respectively. The con-
tour length depends only insignificantly on temperature.

1.2. Polymer elongation. In the next step, we sam-
ple the end-to-end distance Ree(t) of the chains, that is,
the distance between the terminal chiral carbon atoms
(see Fig. S1a). The elongation of the chain λ is in this
case defined as the ratio between the average end-to-end
distance 〈Ree〉 and the chain’s contour length Lc, viz.

λ =
〈Ree〉

Lc
. (S1)

Figure S1b shows the elongation parameter as a function
of temperature for both considered tacticities. In both
cases, the chain is considerably extended at lower tem-
peratures and collapses at high temperatures (see Fig. S1a
for snapshots). This abrupt change in Ree is a fingerprint
of the coil–globule transition of the PNIPAM polymer,
which can, however, deviate from the thermodynamic
limit of a long polymer chain or a cross-linked network.
Here, due to the finite size of the chain, the transition is
much less abrupt than for longer chains. We nevertheless
reproduce the experimental trend, where the syndiotac-
tic polymer has higher transition temperature than the
isotactic one.1
The largest elongation is around λ = 0.75–0.85, indicated
by a blue-shaded stripe in Fig. S1. This interval is an
estimate for the maximal elongation of chain sequences
in a swollen PNIPAM hydrogel.
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Figure S1: (a) Snapshots of 20-monomers-long PNIPAM
chains in water (not shown) in their isotactic (iso) and syn-
diotactic (synd) variants and at two different temperatures (de-
noted as 1 and 2 in panel (b)). (b) Elongation λ obtained via
Eq. (S1) of 20-monomer long isotactic and syndiotactic chains
as a function of temperature.

2. PARTIAL CHARGES IN THE NITRO
MOLECULES

In our simulations, we use the OPLS-AA force field for
the solutes.2 However, the partial charges of the nitro-
phenolate ion, NP−, are not provided within the force
field and have to be determined independently.
As the main focus of our study lies on the aromatic nitro
compounds, we perform a verification of the simulation
results by an additional set of simulationswith alternative
force-field parameters. To that end, we independently
determine the charge distribution in the aromatic nitro
molecules NB and NP0 based on quantum mechanical
calculations, which we describe in the following.

2.1. Evaluation of partial charges. We determine
charge distribution in the three studied aromatic ni-
tro molecules (NB, NP0, and NP−) based on quantum
mechanical calculations using the Gaussian 09 soft-
ware.3 We employ the B3LYP functional with the cc-
PVTZ basis set using the electrostatic potential fitting
method (ESP).4 The ESP method bridges the gap be-
tween the classical coulomb model for the electrostatic
potential and the ‘accurate’ quantummechanical descrip-
tion, and it is therefore well suited for polar molecules in
MD simulations.5 The point charge calculations are per-
formed in two environments, (i) in vacuum (referred to as
QM1) and (ii) in implicit solvent with dielectric constant
ε = 78.35 (referred to asQM2). For the latter, we employ
the Polarizable Continuum Model (PCM), which per-
forms self-consistent reaction-field calculations based on
the integral equation formalism model. See Refs. [3, 6]
for more details. The charges are generated from the fi-
nal structure of a geometry optimization on B3LYP level.
The spin multiplicities are all set to 1 (i.e., zero net spin)
and the net charges are predefined as 0 in cases of NB
and NP0 and −1 in the case of NP−.
The partial-charge values of the nitromolecules, rounded
to three digits, are shown in Fig. S2. Since the molecules
are symmetric with respect to the vertical, the partial
charges are equivalent on both sides of the molecule
(denoted only once).
Comparing the partial charges in NB and NP0 provided
by theOPLS-AA force fieldwith those obtained byGaus-
sian, it can be seen that the difference is not significant.
The independently evaluated partial charges enable us to
compare the results from the original OPLS-AA force
field, termed as ‘OPLS’ parameterization in our text,
with the modified force fields containing the partial
charges as obtained by the QM calculation (QM1 and
QM2). All other model parameters are kept as in the
original OPLS-AA force field.

2.2. Force fields for NP−. Partial charges of the nitro-
phenolate NP− ion are not providedwithin theOPLS-AA
force field. Therefore, constructing its model requires re-
solving the partial charges separately.
In this study, we compare three different approaches for
determining the partial charges. All cases are based on
quantum-mechanical calculations. The Lennard-Jonnes
and the bonded parameters of the molecule are in all
cases adopted from the OPLS-AA force field.

a) Quantum-mechanical (QM1) in vacuum: In the
first approach, we assign the charge distribution ob-
tained from the quantum calculations in vacuum via
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Figure S2: Partial charges of aromatic nitro molecules: nitrobenzene (NB), protonated nitrophenol (NP0), and deprotonated
nitrophenol (NP−) as provided by the OPLS-AA force field (a, b), evaluated via QM calculations by Gaussian in vacuum (d, e, f)
and implicit solvent (h, h, i), and by the combination of the OPLS and QM parameters via Eq. (S2) (c).

Gaussian to the partial charges ofNP− atoms. We re-
fer to this parameterization as ‘QM1’ parameteriza-
tion, NP−(QM1). The results are shown in Fig. S2f.

b) Quantum-mechanical (QM2) in implicit solvent:
The second approach, which is similar to QM1, con-
tains an implicit solvent mimicking water environ-
ment based on self-consistent reaction-field calcula-
tions implemented in Gaussian simulation package,
see above. The corresponding results are shown in
Fig. S2i.

c) OPLS/QM1 (O/QM1): In the third approach we
determine the partial charges of NP− by a com-
bination of the charge distribution from QM1 and
the OPLS-based partial charges of the protonated
molecules. The difference between the charge dis-
tributions in NP0(QM1) and NP−(QM1) as eval-
uated by Gaussian in vacuum (Figs. S2e and f)

gives the information about the charge redistribu-
tion upon deprotonation of the hydroxyl group,
NP0 →NP−. Adding this difference of the par-
tial charges respectively on top of the partial charges
of NP0(O) provided by OPLS-AA, gives a hybrid
‘OPLS/QM1’ parameterization, which we denote as
NP−(O/QM1). A partial charge of each atom in the
NP−(O/QM1) is thus respectively defined as

NP−(O/QM1) := NP0(O)−NP0(QM1)+NP−(QM1).
(S2)

A tiny charge of+0.027 that remains left on the phan-
tom site of the removed hydrogen in the OH group
we uniformly redistribute throughout the molecule.
The obtained partial charges for NP−(O/QM1) are
shown in Fig. S2c.

All three approaches yield quite similar results for the
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partial charges in NP−. As can be seen, the deprotonated
oxygen and its neighboring atoms exhibit a rather neutral
but very polar character. The negative excess charge of
−1 is namely delocalized throughout the entire molecule,
partially absorbed by the nitro group on the other side of
the molecule due to its negative mesomeric (−M) effect.

3. ADSORPTION PER CONTOUR LENGTH

The adsorption coefficient Γ′, defined via Eq. (4) in the
main text, represents the number of adsorbed solutes
per longitudinal extension Lz of the chain. An alterna-
tive way is to express the adsorption per chain’s contour
length Lc instead of per Lz . By combining Eqs. (1)
and (4) in the main text, the total adsorption expresses as

Γ = (λΓ′) c0Lc. (S3)

Thus, the product λΓ′ corresponds to the adsorption
coefficient expressed per contour length.
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Figure S3: Same plot as in Fig. 4 in the main text, but with
the adsorption coefficient Γ′ rescaled by the chain elongation
λ, which corresponds to the adsorption coefficient expressed
per chain’s contour length.

As can be seen fromFig. S3 the adsorption coefficient ex-
pressed per contour length, λΓ′, shows less dependency
on the elongation than when expressed per longitudi-
nal elongation, Γ′ (cf. Fig. 4 in the main text). While
NB shows a weak dependence on the elongation λ, NP−
shows no significant dependence for a loose chain, λ < 1.
For an overstretched chain (λ > 1), however, the differ-
ence between the isotactic and syndiotactic chains be-
come significant for NP−.

4. CONTACT FRACTIONS

In this section we provide the binding analysis used in
Section 3.3 in the main text based on monitoring the
distance between the atoms in a solute molecule and the
polymer. This method enables a more detailed analysis
of adsorption than the integration of RDFs.

4.1. Total residence time. In the course of simula-
tions we measure closest distance between the atoms in
a solute and in the PNIPAM chain, as denoted by dall in
the example in Fig. S4a.
Figure S4b shows a 10-ns-long trajectory of the closest
distance dall between PNIPAM and NP− by a red curve.
When the solute molecule approaches the polymer closer
than the threshold distance d0, the solute molecule is
considered as bound. The adsorption thus depends on
the choice of the threshold value d0. In our case, we
choose the value d0 such that the adsorption evaluated
from the distance measurements equals to the adsorption
obtained from integration of RDF, as we will explain in
the following.
The total residence time τtot of a molecule on the chain
(i.e., the total time the molecule is bound) in the course
of a simulation depends on the simulation box size Lx ×

Ly × Lz , as the available space the molecule can explore
determines the frequency with which it is revisiting the
chain. The ratio between the total residence time τall and
the total simulation time tsim is equal to the ratio between
the amount that is adsorbed on the chain, Γ = Γ′c0Lz ,
and the total number of molecules Ntot in the system,

τall
tsim
=
Γ′c0Lz

Ntot
. (S4)

The total number of solute molecules, which is in our
case Ntot = 1, can bewritten as composed of the adsorbed
amount and the amount outside the Gibbs dividing radius
R0 with a bulk concentration c0,

Ntot = Γ
′c0Lz + c0(LxLy − πR2

0)Lz . (S5)

Eliminating c0 from both above equations, yields

τall
tsim
=

Γ′

Γ′ + LxLy − πR2
0
. (S6)

Equation (S6) enables us to compute the residence time
based on the known adsorption coefficient Γ′, which is in
our case obtained by integration of RDF. Alternatively,
we can determine the residence time τall as the overall
time the molecule approaches the chain closer than the
threshold value, dall < d0. Choosing the threshold value
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Figure S4: (a) Simulation snapshot (water not shown) of a
PNIPAM polymer in the presence of NP−. Atoms of dif-
ferent groups in the polymer (ip, am, bb) as well as in the
NP− molecule (NO2, AR, O−) are denoted by different colors.
The blue arrow shows the closest distance between the nitro
group (NO2) and the backbone (bb), d(NO2, bb). The red ar-
row represents the closest distance between the NP− and the
polymer, dall. (b) Closest distances d(NO2, bb) and dall as a
function of time. When the two distances are below the thresh-
old of d0 = 0.4 nm (horizontal dashed line), the two groups and
the molecule are considered as bound, respectively. The bound
states (dall< d0) are denoted by blue regions, where the darker
shade corresponds to d(NO2, bb) < d0.

d0 = 0.4 nmyields the same τall forNB as calculated from
Eq. (S6). Not surprisingly, the fitted value d0 = 0.4 nm
roughly corresponds to the LJ diameter of the carbon
atomσLJ = 0.35 nm in theOPLS force field.2 The shaded
regions in Fig. S4b show the instances where dall < d0
and the molecule is considered as bound.

4.2. Contact fractions. Detailed information on
binding can be gained by additionally comput-

ing the closest distance d(X,Y ) between the group
X ∈ {NO2,AR,OH/O−} in the solute molecule and the
groups Y ∈ {ip, am, bb} in the polymer, as shown in
Fig. S4a for the case X =NO2 and Y = bb.
We assign the groups X and Y as bound at a given mo-
ment if they approach a distance that is below the thresh-
old value of d0 = 0.4 nm. This enables us to define a
total residence time τ(X,Y ) of the groups X andY as the
cumulative time in the course of the simulation where
d(X,Y )< d0. The darker blue shade in Fig. S4b denotes
the instances where d(NO2, bb) < d0, that is, where the
nitro group is bound to the polymer backbone.
We define the contact fraction of the groups X and Y
as the ratio between the residence time τ(X,Y ) of the
groups X and Y and the total residence time τall of the
solute to the polymer,

contact fraction =
τ(X,Y )
τall

. (S7)

The contact fractions for NB, NP0, and NP− are shown
in Fig. 6 in the main text.

5. ADSORPTION OF A WEAKLY INTER-
ACTING GAS

We estimate the adsorption coefficient Γ′ of solutes on a
polymer chain in terms of a virial-expansion approach.
In the following approximation, we treat the adsorbed
solutes on the surface of the polymer as two dimensional
weakly-interacting gas.
A two-dimensional gas of particles interacting with one
another in the plane has to order N2 in a virial expansion
the free energy given by7

F0
2D = N kBT

(
log

λ3N
Aδ
− 1

)
+

N2kBT B(2D)
2

A
. (S8)

Here, N is the total number of adsorbed particles on the
surface of area A, δ is an effective width of the adsorbed
layer, and B(2D)

2 is the surface second virial coefficient
given by

B(2D)
2 = −π

∫ ∞

0
[e−u (r )/kBT − 1]rdr, (S9)

where u(r) is the pair interaction between two particles.
In order to describe the particles adsorbed on the surface,
we add a term εN to account for the effective binding
energy,

F2D = F0
2D + εN . (S10)

The chemical potential of the adsorbed particles µ =
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(∂F2D/∂N )A,T is then

µ = kBT log
(
λ3N/Aδ

)
+ 2kBT B(2D)

2 N/A + ε . (S11)

Equating it with the chemical potential of the surround-
ing bulk ideal gas µ = kBT log λ3c0, where c0 is its
density, we obtain

N/A = c0δe−ε/kBT e−2B
(2D)
2 N/A. (S12)

We now assume the adsorbing surface of the polymer as
a cylinder with the area A = 2πRL, where R is the radius
and L the length. We can thus relate the adsorbed solutes
per area N/A to the adsorption coefficient Γ′ as N/A =
Γ′c0/2πR. Furthermore, we take into account that the
virial expansion is valid for B(2D)

2 N/A� 1, which allows
us to expand the second exponential function in Eq. (S12)
to the first order, which gives

Γ
′ = 2πRδe−ε/kBT *

,
1 +

B(2D)
2 Γ′

πR
+
-
. (S13)

Comparing the last equation to the expression Γ′ =
Γ′0 + Γ

′
1c0, we obtain Γ′0 = 2πRδe−ε/kBT for the leading

order of the adsorption coefficient, and the first-order
correction then follows as

Γ
′
1 = −

B(2D)
2 Γ′20

πR
. (S14)

The above approach is based on several approximations
that prevent us to quantitatively compare its predictions
to the MD results. First, the effective radius of the cylin-
der is R= 0.5 nm, comparable to the size of the solutes,
which makes the two-dimensional treatment of the gas
not precise. Second, the above approach treats the ad-
sorption of the solutes on the polymer in terms of a
smooth potential well of depth ε . In reality, the binding
potential is a collection of individual interacting sites and
therefore highly non-uniform. Nevertheless, the derived
equation (S14) offers important insights into qualitative
understanding of the observed trends in adsorption from
the simulations.
The cooperativity effects in the case of NB can be seen
also visually from the snapshot in Fig. S5, which shows
that the NB molecules tend to bind around already ad-
sorbed molecules on the polymer.

Figure S5: Simulation snapshot of a PNIPAM chain with the
elongation λ = 0.82 and 8 NB molecules (shown in red) in
the simulation box (water not shown), featuring a localized
aggregation of four NB molecules at the same location on the
PNIPAM chain.
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