Supplementary Information

Toward full simulation of the electrochemical oxygen reduction reaction on Pt with first-principles and kinetic calculations

Tamio Ikeshoji
1,2 and Minoru Otani 2

(1) Fuel Cell Cutting-Edge Research Center Technology Research Association (FC-Cubic),

AIST Tokyo Waterfront Main Building, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.

(2) Research Center for Computational Design of Advanced Functional Materials,

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan.

December 11, 2016

1 Computations

The cutoff energies for the DFT calculations were 3060 and 340 eV for electron density and plane waves, respectively. The SCF criterion and smearing factor were set at $0.5 - 2.7 \times 10^{-7}$ eV/atom and 0.14 - 0.27 eV, respectively. The MD temperature was controlled at 353 K with simple velocity scaling or a Nóse–Hoover thermostat [1]. The MD timestep was 1.0 fs with the mass of deuterium used for the hydrogen atoms. To calculate the redox potential and activation energy, the time-averaged values of the total energy and forces across about 0.5 ps and 2 ps, respectively, were obtained after equilibration. The cell size in the z-direction must be long enough to avoid influences from the Pt–water and water–vacuum interfaces. FPMD calculations were typically carried out with 128 cores in parallel on supercomputers mentioned in Acknowledgement. 1 ps calculation needed one week without a waiting time.

In the redox potential calculation, a hydrogen atom of a randomly selected adsorbed- H_2O was removed to make OH adsorption. In order to make O adsorption, a hydrogen atom of a randomly selected OH(ad) was removed. Total energy becomes stable after 200–300 MD steps. Then, a H atom is removed gain. After producing each configuration having the different number of O and OH adsorption, these different configurations were independently equilibrated. OH(ad) and $H_2O(ad)$ sometimes exchange the H atom between them. OH(ad) is located on an atop site, and O(ad) is on a hollow site.

In the activation energy calculation, a configuration of n = 2 in Fig. 2(a) was used for reaction R1 and that of n = 1 in in Fig. 2(b) was used for reaction R2. The atomic distance between H of OH or H₂O on Pt and O of the nearest water molecule was constrained. The distance was step-by-step shortened from the initial atomic distance. After selecting several configurations, constraint FPMD calculation was carried out at each distance. Atomic distance was constrained by the SHAKE algorithm [3].

2 Change in coverage of adsorbed O and OH during CV

The degree of coverage of adsorbed OH and O species during CV are shown in Fig. S1. Here, the normalized coverage, $\theta/\theta_{\text{sat}}$, was defined with a saturated coverage value of $\theta_{\text{sat}} = 2/3$.

Figure S1: Changes in normalized coverage (θ/θ_{sat}) of OH(ad) and O(ad) for CV results using scan rates, v = 0.02, 0.2, and 2 V/s.

3 Calculating the activation energy and symmetry factor from two energy profiles

We consider two energy profiles shown in Fig. S2. The red curve is at the equilibrium; the energy levels at the initial and final states are the same. The blue broken curve is the general case. $E_{\rm a}$ in the Butler–Volmer equation is the activation energy for the equilibrium case. When the energy level of the final state ($E_{\rm final}$) is different from that initial ($E_{\rm initial}$), the energy level at the transition state ($E_{\rm transition}$) will change by β , as widely detailed in electrochemistry textbooks, e.g. [4] as

$$E_{\text{transition}} = E_{\text{initial}} + \beta (E_{\text{final}} - E_{\text{initial}}). \tag{1}$$

With two energy profiles, 1 and 2, of differing energy levels for the final and transition states, they will be:

$$E_{\text{transition},1} = E_{a} + \beta E_{\text{final},1} \qquad \qquad E_{\text{transition},2} = E_{a} + \beta E_{\text{final},2} \qquad (2)$$

where the energy levels for the transition and final states are measured from the baseline of the initial energy level. From these two equations, $E_{\rm a}$ and β are obtained as follows.

$$\beta = \frac{E_{\text{transition},2} - E_{\text{transition},1}}{E_{\text{final},2} - E_{\text{final},1}} \tag{3}$$

$$E_{\rm a} = \frac{E_{\rm transition,1} E_{\rm final,2} - E_{\rm transition,2} E_{\rm final,1}}{E_{\rm final,2} - E_{\rm final,1}} \tag{4}$$

Figure S2: Schematic showing two different energy profiles at equilibrium (red line) and in the general case (broken blue line) along the reaction coordinate.

4 Parameters for rate equations

The O_2 saturation concentration was taken from the literature [6], as were diffusion coefficients for both H_3O^+ and O_2 [7]. The activity coefficients of all species were assumed to be unity. All parameters were assumed to be at 353 K, a typical working temperature for a fuel cell. In the LSV calculations, the diffusion layer thickness was set to 20 μ m. The parameters used in the CV and LSV calculations are summarized in Tables S1 and S2.

reaction	R1	R2	R3
E_0/eV	0.80^{a}	1.14^{a}	0.92^{a}
$E_{\rm a}/{\rm eV}$	0.09^{a}	0.28^{a}	0.48^{b}
κ	2.0×10^{4c}	2.0×10^{4c}	7.4×10^{12d}
β	0.5^a	0.4^{a}	-

Table S1: Parameter set used in CV and LSV calculations (353 K)

^{*a*} calculated in this work, ^{*b*} ref. [5]. ^{*c*} from $(k_{\rm B}T/h) \exp(-0.6 \text{ eV}/RT)$, ^{*d*} from $(k_{\rm B}T/h)$

Table S2: Parameters used for calculations of the bulk (353 K)

parameter	unit	H^+	O_2	O(ad), OH(ad)
diffusion coefficient ^{a}	$\rm cm^2 s^{-1}$	1.81×10^{-4}	6.76×10^{-5}	
concentration in the bulk b	Μ	$1.00 imes 10^{-1}$	1.59×10^{-3} (for LSV)	
			$1.59 \times 10^{-15} \text{ (for CV)}$	
saturated concentration ^{c}	Μ		1.59×10^{-3}	
saturated coverage e	$ m mol~cm^{-2}$			1.64×10^{-9}

^{*a*} from ref.[7], ^{*b*} calculation conditions, ^{*c*} from ref.[6], ^{*e*} 2/3 of the surface Pt density.

5 Rate and diffusion equations

Rate equations for electrochemical reactions are given in the main text. Rate equation for O adsorption from O_2 , R3, is:

$$J^{(3)} = \kappa^{(3)} \left[-c_{O_2}^{x=0} (1 - \sigma_O - \sigma_{OH})^2 \exp\left(-\frac{1}{RT} E_a^{(3)}\right) \right]$$
(5)

 O_2 formation reaction is not considered here. Another equations used to calculate CV and LSV are the following diffusion equations for diffusion flux J_{diff} of H⁺ and O₂.

$$J_{\rm diff} = D \frac{\partial C}{\partial x} \tag{6}$$

Wehre C is a molar concentration, which has the following relation with molar fraction, c, and molar density, ρ .

$$C = \rho c \tag{7}$$

Terms used in the paper are summarized below.

J; current density

 J_0 ; exchange current density

E; electrode potential

 E_0 ; redox potential

 $E_{\rm a}$; activation energy

 η ; overpotential

 $\kappa;$ prefactor in rate equation

 β ; symmetry factor

F; Faraday constant

R; gas constant

T; temperature

c; molar fraction

C; molar concentration

 σ ; surface concentration normalized by saturated concentration

 θ ; surface coverage

 OH, O, H^+, O_2 ; parameters or variables for the species in the subscript

 $^{(1)}$, $^{(2)}$, $^{(3)}$; parameters or variables for the reactions given in R1, R2, and R3 in the main text $x^{=0}$; parameter value at the electrode

References

- [1] S. Nosé, J. Chem. Phys. 1984, 81, 511-519.
- [2] T. Ikeshoji, M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, Y. Qian and I. Yagi, AIP Adv., 2012, 2, 032182.
- [3] J-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys., 1977, 23, 374-341.
- [4] A. J. Bard and L. R. Faulker, *Electrochemical Methods: fundamentals and applications* 2nd ed.; Wiley, 2001.
- [5] H. A. Hansen, V. Viswanathan and J. K. Nørskov, J. Phys. Chem. C, 2014, 118, 6706?6718.
- [6] R. Battino ed., *IUPASC Solubility Data Series*, Vol. 7, "Oxygen and Ozone", (Pergamon Press, Oxford 1981).
- [7] A. J. Alliot, AECL-11073, "Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water over the Range 0-300 °C", (Atomic Energy of Canada Limited 1994).