Electronic Supplementary Information

The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions

Liang Xu,^{*} Haitao Lei,^{*} Zongyao Zhang,^a Zhen Yao,^c Jianfeng Li,^c Zhiyong Yu,^a and Rui Cao^{*ab}

^aDepartment of Chemistry, Renmin University of China, Beijing 100872, China.
^bSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

^cCollege of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.

[‡]These authors contributed equally to this work.

*Correspondence E-mail: <u>ruicao@ruc.edu.cn</u>

Figure S1. UV-vis spectra of 5 μ M 1 in dichloromethane with addition of various amounts of 4-cyanopyridine at room temperature.

Figure S2. UV-vis spectra of 5 μ M 1 in dichloromethane with addition of various amounts of pyridine at room temperature.

Figure S3. UV-vis spectra of 5 μ M 1 in dichloromethane with addition of various amounts of 4-(dimethylamino)pyridine at room temperature.

Figure S4. UV-vis spectra of 5 μ M 1 in dichloromethane with addition of various amounts of 4-methoxypyridine at room temperature.

Figure S5. UV-vis spectra of 5 μ M **1** in dichloromethane with addition of various amounts of *N*-methylimidazole at room temperature.

Figure S6. UV-vis spectra of 5 μ M 1 in dichloromethane with addition of various amounts of sodium thiophenolate dissolved in methanol at room temperature.

Figure S7. ¹H NMR spectrum of 1-py-CN in CDCl₃.

Figure S8. ¹H NMR spectrum of 1-py in CDCl₃.

Figure S9. ¹H NMR spectrum of 1-py-NMe₂ in CDCl₃.

Figure S10. ¹H NMR spectrum of 1-py-OMe in CDCl₃.

Figure S11. ¹H NMR spectrum of 1-im-Me in CDCl₃.

Figure S12. ¹H NMR spectrum of 1-thi in CD₃OD.

Figure S13. CV of 1-py-CN (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S14. CV of 1-py (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S15. CV of 1-py-NMe₂ (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S16. CV of **1**-py-OMe (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S17. CV of **1**-im-Me (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S18. CV of 1-thi (1.0 mM) in acetonitrile (0.1 M Bu₄NPF₆). Conditions: GC working electrode, Pt auxiliary electrode, Ag/Ag^+ reference electrode (calibrated using Fc⁺/Fc), 50 mV s⁻¹ scan rate.

Figure S19. UV-vis spectra of 1-py-OMe in acetonitrile before (black) and after (red) 20-h CPE at 1.0 V. Conditions: 0.1 M Bu_4NPF_6 , GC working electrode, Pt auxiliary electrode, Ag/Ag⁺ reference electrode, 20 °C.

Figure S20. X-band EPR spectrum of 1-py-OMe in acetonitrile at 90 K.

Table S1. Crystal data and structure refinement parameters for the X-ray structure of 1-py-OMe.

Complex	1-py-OMe
molecular formula	$C_{49}H_{22}CoF_{15}N_6O_2$
formula wt. (g mol^{-1})	1070.66
temperature (K)	300(2)
radiation (λ, \dot{A})	0.71073
crystal system	Monoclinic
space group	<i>C</i> 2/c
<i>a</i> (Å)	30.225(3)
b (Å)	16.6117(11)
<i>c</i> (Å)	31.830(2)
β (°)	116.663(4)
Volume (Å ³)	14282.3(19)
Ζ	12
$\rho_{\rm calcd} ({\rm g \ cm}^{-3})$	1.494
$\mu (\mathrm{mm}^{-1})$	0.466
F(000)	6432
crystal size (mm ³)	0.20 imes 0.20 imes 0.20
Theta range	2.40 to 24.71°
reflections collected	202842
independent reflections	12113 [R(int) = 0.2010]
Completeness	99.4%
goodness-of-fit on F ²	1.089
final R indices	$R1^a = 0.0994$
$[R > 2\sigma(I)]$	$wR_2^{b} = 0.2571$
R indices (all data)	$R1^{a} = 0.1465$
	$wR_2^{\ b} = 0.2980$
largest diff. peak and hole (e $Å^{-3}$)	1.738 and -0.485

$${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|| / |F_{o}|, {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{0.5}$$