Supporting information

Red luminescence control of Eu(III) complex by utilizing the multi-colored electrochromism of viologen derivatives

Kenji Kanazawa, ^{a,‡}Yuta Komiya, ^a Kazuki Nakamura, ^{a, b} and Norihisa Kobayashi^{a, b}*

^a Department of Image and Materials Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^b Molecular Chirality Research Center, Chiba University, Japan [‡]Research Fellow of the Japan Society for the Promotion of Science (JSPS)

> **E-mail: koban@faculty.chiba-u.jp; Fax: +81-43-290-3490; Tel: +81-43-290-3457*

Table of Contents

1.	Characterization of 1,1'-diheptyl-4,4'-vinylenebipyridinium dibromide (HVP ²⁺)S1		
2.	Absorption spectra of viologen derivatives/Eu(hfac) ₃ (TPPO) ₂ solution		
	with and without potential application		
3.	Emission spectra of Eu(hfac) ₃ (TPPO) ₂ solution		
4.	Absorption spectra of $Eu(hfac)_3(H_2O)_2$, HV^{2+} , HVP^{2+} , and DNP^{2+} S5		
5.	Absorption spectrum of $Eu(hfac)_3(H_2O)_2$ and excitation and emission spectra		
	of Gd(hfac) ₃ (H ₂ O) ₂ S6		
6.	Estimations of coloration efficiencies of EC molecules		

1. Characterization of 1,1'-diheptyl-4,4'-vinylenebipyridinium dibromide

(HVP²⁺)

Fig. S1¹H NMR spectrum of HVP^{2+} in dmso- d_6 .

Fig. S2 FT-IR spectrum of HVP^{2+} .

2. Absorption spectra of each viologen derivatives/Eu(hfac)₃(TPPO)₂ solution with and without potential application

Fig. S3 Absorption spectra of $Eu(hfac)_3(TPPO)_2/HV^{2+}$ in a 200 mmol/L TBAP/DMSO electrolyte solution with a three-electrode cell by application potential at -0.52 V (vs. Ag/AgCl) for 6 s. Insets are coloration changes of samples. Concentrations of $Eu(hfac)_3(TPPO)_2$ and HV^{2+} are 5 mmol/L.

Fig. S4 Absorption spectra of $Eu(hfac)_3(TPPO)_2/HVP^{2+}$ in a 200 mmol/L TBAP/DMSO electrolyte solution with a three-electrode cell by application potential at -0.55 V (vs. Ag/AgCl) for 6 s. Insets are coloration change of samples. Concentrations of $Eu(hfac)_3(TPPO)_2$ and HVP^{2+} are 5 mmol/L.

Fig. S5 Absorption spectra of $Eu(hfac)_3(TPPO)_2/DNP^{2+}$ in a 200 mmol/L TBAP/DMSO electrolyte solution with a three-electrode cell by application potential at -0.15 V (vs. Ag/AgCl) for 6 s. Insets are coloration change of samples. Concentrations of $Eu(hfac)_3(TPPO)_2$ and DNP^{2+} are 5 mmol/L.

3. Emission spectra of Eu(hfac)₃(TPPO)₂

Fig. S6 Emission spectra of $Eu(hfac)_3(TPPO)_2$ solution without viologen derivatives-based on the two electrodes cell by irradiated at 337 nm [solid line: open-circuit condition, dashed line: under the application of -2.1 V (s)].

4. Absorption spectra of HV²⁺, HVP²⁺, and DNP²⁺

Fig. S7 Normalized absorption spectra of HV^{2+} (blue solid line), HVP^{2+} (magenta solid line), and DNP^{2+} (green solid line). As the solvents for estimation of bandgaps, propylene carbonate for HV^{2+} and dmso for HVP^{2+} and DNP^{2+} were used.

5. Absorption spectrum of $Eu(hfac)_3(TPPO)_2$ and excitation and emission spectra of $Gd(hfac)_3(H_2O)_2$

Fig. S8 Normalized absorption spectrum of 10 µM Eu(hfac)₃(TPPO)₂ in DMSO.

Fig. S9 Normalized excitation and emission spectra of 10 μ M Gd(hfac)₃(H₂O)₂ in mixture solvents of ether, ethanol, and toluene (volume ratio = 2:1:1) at 77 K.

6. Estimations of coloration efficiencies of EC molecules

Coloration efficiency (η) is an important characteristic of EC molecules. It is defined as the change in the optical density ($\Delta O.D.$ or ΔA) for the charge consumed (ΔQ) per unit electrode (area, S) during the switching of the solution from dication to monocation radical species of EC molecules. The corresponding equation is given below:

$$\eta (cm^2/C) = \frac{\Delta A}{\Delta Q (C) / S (cm^2)}$$

where ΔA and S are absorbance difference between dication and monocation radical state of EC molecules and reaction area of electrode (1.74 cm² in this report). From this equation and the slopes of approximate straight lines for ΔA versus charge density plot as given in inset of Fig. S4, η of EC molecules were estimated as seen in Table S1. The values of HV⁺⁺, HVP⁺⁺, and DNP⁺⁺ were almost coincided with previous reports.

Further, molar extinction coefficient (ε) is determined by Lambert-Beer law as given below:

$$\varepsilon = \frac{\Delta A}{C \times L} = \frac{\Delta A}{Q / (F \times V) \times L} = \frac{\Delta A}{Q} \times F \times V \times L$$

where C, L, F, and V are molar concentration of EC molecule, optical length, Faraday constant, and solution volume. In this paper, L, F, and V were 1.0 cm, 9.65×10^4 C/mol, and 1.57×10^{-3} L, respectively. From this equation and the slopes of approximate straight line for ΔA versus charge density plot as given in inset of Fig. S10, ε of EC molecules in monocation radical state were estimated as seen in Table S1.

Fig. S10 Plots of absorbance difference (ΔA) versus charge density of a monochromatic wavelength at (a) 604 nm (HV^{+.}), (b) 519 nm (HVP^{+.}), and (c) 867 nm (DNP^{+.}).

Compound	λ_{abs}	η	З
	[nm]	$[cm^2/C]$	$[M^{-1}cm^{-1}]$
HV^{2+}	604	133	13000
HVP ²⁺	519	468	45100
DNP ²⁺	867	137	13200

 Table S1 Coloration efficiencies and molar extinction coefficients of monocation

radical states of EC molecules.

Fig. S11 Coloration efficiencies of monocation radical species of viologen derivatives.