Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

"Formation of coronene:water complexes: FTIR study in argon matrices and theoretical characterization"

A Simon, J.A. Noble, G. Rouaut, A. Moudens, C. Aupetit, C. Iftner, and J. Mascetti*

DOI: 10.1039/c6cp08559h

E.S.I. Table S1 and Figures S1 – S5

Figure S1: DFTB/FF optimised geometries of (C₆H₆)(H₂O)/Ar ((a,b), 425 Ar atoms) and (C₆H₆)(H₂O)₂/Ar ((c,d), 424 Ar atoms)

(c)

Figure S2. Simulated (BOMD/DFTB/FF) water bands in the (C₆H₆)(H₂O)/Ar complexes (green : σ complexes, blue: π complexes) vs (H₂O)/Ar (black lines). Left panel: bending mode, Right panel: stretching modes. The fact that there are several bands for a given mode is due to slightly different orientations of the water molecule, a typically observed matrix effect. This is not seen in the harmonic spectra as it is a purely dynamic effect. $\delta v = v$ (H₂O in (C₆H₆)(H₂O)/Ar) – v (H₂O/Ar).

Figure S3: Computed harmonic (black) and finite-temperature (red, at 10 K) spectra of $C_{24}H_{12}/Ar$ computed with the DFTB/FF potential.

Figure S4: Simulated spectra (BOMD/DFTB) at 10K of coronene monomer and dimer in the coronene mode regions $\gamma_{CH}(A)$, and $\nu_{CH}(B)$.

Figure S5: Computed harmonic spectra of $C_{24}H_{12}/Ar$ and $(C_{24}H_{12})(H_2O)_{1,2}$ complexes in the ν_{CH} , ν_{CC} and γ_{CCH} vibration regions, at the DFTB/FF and DFTB levels of theory respectively.

C ₂₄ H ₁₂ /Ar (DFTB)		C ₂₄ H ₁₂ (DFTB)			$C_{24}H_{12}$ (DFT, scaling factor 0.958, from Langhoff ¹⁶)			
wavenumber	Intensity	wavenumber	Intensity	mode	wavenumber	Intensity	mode	symmetry
(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(km/mol)		(cm⁻¹)	(km/mol)		
137	0.06	116	0.01	δ CCC oop	123	5	δ CCC oop	
(115)	(0.003)							a2u
400	1	396	0.4	δ CCC ip	378	3	δ CCC ip	e1u
519	1	518	0.6	δ CCC oop	549	28	δ CCH oop	a2u
771	0.01	774	0	γCH	774	13	δ CCH ip	e1u
803	1	802	0.8	δ CCH ip	802	0.15	δ CCC ip	e1u
818	24	823	22	γCH	864	175	γCH	a2u
1172	5	1167	4	δССΗ	1140	6	δCH	e1u
1268	38	1264	41	δССΗ	1214	1	δCH	e1u
1455	3	1452	3	ν CC+ δ CCH	1312	24	δCH	e1u
1644	10	1639	10	vCC	1387	0.5	$\delta CH+\nu CC$	e1u
1701	0.4	1694	0.05	vCC	1495	1	$\delta CH+\nu CC$	e1u
1845	14	1838	13	vCC	1603	13	$\delta CH+\nu CC$	e1u
3038	75	2992	75	νCH	3042	8	vCH	e1u
3053	350	3008	350	vCH	3064	142	νCH	a2u

Table S1: harmonic spectra (positions, intensities and assignment) of coronene in Ar matrix, in the gas phase, and DFT values (gas phase) from ref 16. One can see that the assignment of bending modes is difficult based on both DFB and DFT harmonic calculations.