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1 Details of line-shape functions

The line-shape function in eq. 17 and 18 of the main text is given as
Dy, (w) = i /OO dtet@—omgo)t Gy ()=Gar,y(0) —[tl/Tar, (1)
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Here, the transition frequency from the ground state to the Mth exciton state in domain d is denoted
as wpr,0, which is shifted due to exciton-vibrational coupling from the exciton transition frequency
Wpr0 = EMd/h by
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containing the reorganization energy F in eq. 8 of the main text and the half-sided Fourier transform
of the correlation function of site energy fluctuations C'(w). The real and imaginary parts of the
latter are given as

C(Re) (w) = 27w{(1 4+ n(w))J(w) + n(—w)J(—w)} (3)
and
™ () = %P fo dwé;Ri)(f) (4)

respectively, where P denotes the principal part of the integral. Please note that @y, in eq. [2]is the
transition frequency of the isolated exciton domain d, since the diagonal elements of the perturbation
operator Vg, ne in eq. 2 of the main text are zero and hence there is no first-order contribution
to the transition energies. Lifetime broadening due to exciton relaxation is described through the
inverse dephasing time T]\_/[}l
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and wyy, K, is the transition frequency from exciton state |My > to |K; > of domain d. The function

VM, K, is an electronic overlap factor between exciton states |M, C(lo) > and |Kc(l0) >
2 2
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The time-dependent function G, (t) = yar,n,G(t) in eq. |1 describes the excitation of the vibrational
sidebands, where G(t) is given as

G(t) = /0 T (14 n(w) T (@)e= ™ + n(w)J (w)e“) (7)

and contains the spectral density J(w) and the Bose-Einstein distribution function n(w)

1

n(w) = ShlkeT — 1 (8)

that describes the mean number of excited vibrational quanta at temperature 7. The shape of the
spectral density has been estimated from fluorescence line narrowing spectra of B777 complexes
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with s1 = 0.5, s = 0.8, hwi = 0.069 meV and hwe = 0.24 meV. The Huang-Rhys factor Sy = 0.5

was obtained from the temperature-dependence of the absorption spectrum®.
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Figure S1: Illustration of the Ng — Np and Ny — N¢ axis of Chl. The transition dipole moments of
B and By for extended dipole couplings are rotated by the angles 8 and +.
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Figure S2: Comparison of the ratios A_/A, of negative to positive area of the excitonic CD
spectrum. Excitonic couplings are calculated using an extended dipole approximation for the By and
By transitions which are rotated by the angles 3 and v with respect to the Ng — Np and Ny — N¢
axes, respectively. All other transitions were described with atomic transition charges obtained from
HF/CIS calculations.

Table S1: Transition dipole directions obtained with different QC methods. The angle § for Chl a
and Chl b is with respect to the Ng — Np axis as defined in Fig. For carotenoids, the angle ¢ is
given with respect to the direction of the polyene chain along the C7 — C27 axis. All angles given in
degree.

Chl a
HF-CIS CAM-B3LYP B3LYP BHHLYP
Bl°] Bl°] Bl°] Bl°]
Qy 6.0 5.2 6.4 5.1
By 77.5 88.7 -8.8 88.8
By -7.8 7.3 18.5 6.7
Nyyxy 54.6 61.9 73.2 57.1
Chl b
HF-CIS CAM-B3LYP B3LYP BHHLYP
Bl°] Bl°] Bl°] Bl°]
Qy 14.1 10.2 9.1 9.1
By 76.2 93.9 72.7 94.8
By -11.9 24.4 -29.7 26.8
Nyyxy 46.4 -69.0 79.1 -63.1
Carotenoids
HF-CIS CAM-B3LYP B3LYP BHHLYP
4[°] 4[°] 4[°] 6[°]
Lut 7.9 4.1 2.3 45
Neo 6.8 4.4 2.9 4.5
Vio 8.79 4.8 3.55 5.63
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Figure S3: Comparison of Poisson-TrESP excitonic couplings of Q, transitions obtained from
TD-DFT calculations using BSLYP, BHHLYP and the range separated CAM-B3LYP XC-functionals
and the wavefunction based HF-CIS. The red lines represent perfect correlation.
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Figure S4: Comparison of Poisson-TrESP excitonic couplings between all pigments in CP29 obtained
from TD-DFT calculations using B3SLYP, BHHLYP as well as the range separated CAM-B3LYP
XC-functionals with those obtained from the wavefunction based HF-CIS method. The red lines
represent a perfect correlation.
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Figure S5: The red line shows the spectrum which is obtained by using domains for both Q, and
high-energy transitions that are coupled in first order perturbation theory, as in Fig. 9 of the main
text. The spectrum in black is obtained by diagonalizing an exciton Hamiltonian that contains the
coupling between Q, domains and high-energy domains. The green line shows the spectrum that is
obtained when no domains are introduced and thus one large exciton matrix is diagonalized. The
dashed spectrum is the experiment® shown for comparison.
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Figure S6: Comparison of spectra that are calculated by using domains for both Qy and high-energy
transitions to the experiment”. The red line is obtained when allowing delocalization among high-
energy transitions, as in Fig. 9 of the main text. The blue spectrum is obtained when all excitonic
couplings between high-energy transitions are set to zero.
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