SUPPLEMENTARY INFORMATION

Origin of Non-Conservative Circular Dichroism in the CP29 Antenna Complex of Photosystem II

Dominik Lindorfer*, Frank Müh and Thomas Renger

Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

E-mail: dominik.lindorfer@jku.at

1 Details of line-shape functions

The line-shape function in eq. 17 and 18 of the main text is given as

$$D_{M_d}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt e^{i(\omega - \tilde{\omega}_{M_d}_0)t} e^{G_{M_d}(t) - G_{M_d}(0)} e^{-|t|/\tau_{M_d}}$$
(1)

Here, the transition frequency from the ground state to the Mth exciton state in domain d is denoted as $\tilde{\omega}_{M_d 0}$, which is shifted due to exciton-vibrational coupling from the exciton transition frequency $\omega_{M_d 0} = E_{M_d}/\hbar$ by

$$\tilde{\omega}_{M_d 0} = \omega_{M_d 0} - \gamma_{M_d M_d} \frac{E_\lambda}{\hbar} + \sum_{K_d, M_d} \gamma_{M_d K_d} \tilde{C}^{(Im)}(\omega_{M_d K_d})$$
(2)

containing the reorganization energy E_{λ} in eq. 8 of the main text and the half-sided Fourier transform of the correlation function of site energy fluctuations $\tilde{C}(\omega)$. The real and imaginary parts of the latter are given as

$$\tilde{C}^{(\text{Re})}(\omega) = 2\pi\omega\{(1+n(\omega))J(\omega) + n(-\omega)J(-\omega)\}\tag{3}$$

and

$$\tilde{C}^{(\mathrm{Im})}(\bar{\omega}) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\bar{\omega} \frac{\tilde{C}^{(Re)}(\bar{\omega})}{\bar{\omega} - \omega}$$
(4)

respectively, where \mathcal{P} denotes the principal part of the integral. Please note that $\tilde{\omega}_{M_d 0}$ in eq. 2 is the transition frequency of the isolated exciton domain d, since the diagonal elements of the perturbation operator $V_{Q_y,he}$ in eq. 2 of the main text are zero and hence there is no first-order contribution to the transition energies. Lifetime broadening due to exciton relaxation is described through the inverse dephasing time $\tau_{M_d}^{-1}$

$$\tau_{M_d}^{-1} = 2 \sum_{K_d} \gamma_{M_d K_d} \tilde{C}^{(Re)}(\omega_{M_d K_d})$$
(5)

and $\omega_{M_dK_d}$ is the transition frequency from exciton state $|M_d > \text{to } |K_d > \text{of domain } d$. The function $\gamma_{M_dK_d}$ is an electronic overlap factor between exciton states $|M_d^{(0)} > \text{and } |K_d^{(0)} >$

$$\gamma_{M_d K_d} = \sum_{m_d} \left(c_{m_d}^{(M_d)} \right)^2 \left(c_{m_d}^{(K_d)} \right)^2 \tag{6}$$

The time-dependent function $G_{M_d}(t) = \gamma_{M_d M_d} G(t)$ in eq. 1 describes the excitation of the vibrational sidebands, where G(t) is given as

$$G(t) = \int_0^\infty d\omega \{ (1+n(\omega))J(\omega)e^{-i\omega t} + n(\omega)J(\omega)e^{i\omega t} \}$$
(7)

and contains the spectral density $J(\omega)$ and the Bose-Einstein distribution function $n(\omega)$

$$n(\omega) = \frac{1}{e^{\hbar\omega/k_B T} - 1} \tag{8}$$

that describes the mean number of excited vibrational quanta at temperature T. The shape of the spectral density has been estimated¹ from fluorescence line narrowing spectra of B777 complexes

$$J(\omega) = \frac{S_0}{s_1 + s_2} \sum_{i=1,2} \frac{s_i}{7! 2\omega_i^4} \omega_i^3 e^{-(\omega/\omega_i)^{1/2}}$$
(9)

with $s_1 = 0.5$, $s_2 = 0.8$, $\hbar\omega_1 = 0.069$ meV and $\hbar\omega_2 = 0.24$ meV. The Huang-Rhys factor $S_0 = 0.5$ was obtained from the temperature-dependence of the absorption spectrum².

Figure S1: Illustration of the $N_B - N_D$ and $N_A - N_C$ axis of Chl. The transition dipole moments of B_x and B_y for extended dipole couplings are rotated by the angles β and γ .

Figure S2: Comparison of the ratios A_{-}/A_{+} of negative to positive area of the excitonic CD spectrum. Excitonic couplings are calculated using an extended dipole approximation for the B_x and B_y transitions which are rotated by the angles β and γ with respect to the $N_B - N_D$ and $N_A - N_C$ axes, respectively. All other transitions were described with atomic transition charges obtained from HF/CIS calculations.

		Chl a		
	HF-CIS	CAM-B3LYP	B3LYP	BHHLYP
	$\beta[^{\circ}]$	β [°]	$\beta[^{\circ}]$	$\beta[^{\circ}]$
Q_y	6.0	5.2	6.4	5.1
B_x	77.5	88.7	-8.8	88.8
B_y	-7.8	7.3	18.5	6.7
N_{x+xy}	54.6	61.9	73.2	57.1
		Chl b		
	HF-CIS	CAM-B3LYP	B3LYP	BHHLYP
	$\beta[^{\circ}]$	$\beta[^{\circ}]$	$\beta[^{\circ}]$	$\beta[^{\circ}]$
Q_y	14.1	10.2	9.1	9.1
B_x	76.2	93.9	72.7	94.8
B_y	-11.9	24.4	-29.7	26.8
N_{x+xy}	46.4	-69.0	79.1	-63.1
		Carotenoids		
	HF-CIS	CAM-B3LYP	B3LYP	BHHLYP
	$\delta[^\circ]$	$\delta[^\circ]$	$\delta[^{\circ}]$	$\delta[^\circ]$
Lut	7.9	4.1	2.3	4.5
Neo	6.8	4.4	2.9	4.5
Vio	8.79	4.8	3.55	5.63

Table S1: Transition dipole directions obtained with different QC methods. The angle β for Chl *a* and Chl *b* is with respect to the N_B – N_D axis as defined in Fig. S1. For carotenoids, the angle δ is given with respect to the direction of the polyene chain along the C7 – C27 axis. All angles given in degree.

Figure S3: Comparison of Poisson-TrESP excitonic couplings of Q_y transitions obtained from TD-DFT calculations using B3LYP, BHHLYP and the range separated CAM-B3LYP XC-functionals and the wavefunction based HF-CIS. The red lines represent perfect correlation.

Figure S4: Comparison of Poisson-TrESP excitonic couplings between all pigments in CP29 obtained from TD-DFT calculations using B3LYP, BHHLYP as well as the range separated CAM-B3LYP XC-functionals with those obtained from the wavefunction based HF-CIS method. The red lines represent a perfect correlation.

Figure S5: The red line shows the spectrum which is obtained by using domains for both Q_y and high-energy transitions that are coupled in first order perturbation theory, as in Fig. 9 of the main text. The spectrum in black is obtained by diagonalizing an exciton Hamiltonian that contains the coupling between Q_y domains and high-energy domains. The green line shows the spectrum that is obtained when no domains are introduced and thus one large exciton matrix is diagonalized. The dashed spectrum is the experiment³ shown for comparison.

Figure S6: Comparison of spectra that are calculated by using domains for both Q_y and high-energy transitions to the experiment³. The red line is obtained when allowing delocalization among high-energy transitions, as in Fig. 9 of the main text. The blue spectrum is obtained when all excitonic couplings between high-energy transitions are set to zero.

References

- [1] T. Renger and R. A. Marcus, J. Chem. Phys., 2002, 116, 9997–10019.
- [2] F. Müh, D. Lindorfer, M. Schmidt am Busch and T. Renger, Phys. Chem. Chem. Phys., 2014, 16, 11848–11863.
- [3] A. Pascal, C. Gradinaru, U. Wacker, E. Peterman, F. Calkoen, K.-D. Irrgang, P. Horton, G. Renger, R. van Grondelle, B. Robert and H. van Amerongen, *Eur. J. Biochem.*, 1999, 262, 817–823.