Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

	Simplified Complexes	Substituted Complexes	Difference
	r_{U-N}	r_{U-N}^{-}	Δr_{U-N}^{-}
C ₀	2.532/2.527	2.554/2.543	0.022/0.016
C ₂ a	2.804/2.799	2.673/2.659	0.131/0.140
C ₂ b	2.780/2.771	2.688/2.674	0.112/0.097
C ₂ c	2.776/2.770	2.689/2.674	0.087/0.096
C ₄ a	2.717/2.706	2.689/2.680	0.028/0.026
C ₄ b	2.701/2.687	2.684/2.673	0.017/0.014
C ₄ c	2.703/2.692	2.689/2.678	0.014/0.014
C ₆	2.700/2.697	2.696/2.688	0.004/0.009

Table S1: Average U-N bond lengths in Angstrom for complexes optimised with the PBE exchange correlation functional in the gas phase/*DCM*, with and without peripheral substituents.

	$r_{\text{U-N}}$ (Gas phase/ <i>DCM</i>)			r _{U-N} (Exp)						
	r _{U-N}	r _{U-N}	r _{U-N}	r _{U-N}	r _{U-N}	$r_{\rm U-N}$	r _{U-N1}	r _{U-N2}	r _{U-N3}	r _{U-N(av)}
C ₀	2.534/2.530	2.528/2.522	-	-	-	-	-	-	-	2.53ª
C ₂ a′	2.835/2.812	2.709/2.696	2.709/2.694	2.604/2.591	2.593/2.581	2.591/2.579	-	-	-	-
C ₂ b′	2.586/2.573	2.587/2.573	2.772/2.702	2.765/2.693	2.713/2.755	2.705/2.747	2.57	2.68	2.64	2.63 ^b
C ₂ c'	2.751/2.736	2.749/2.733	2.749/2.733	2.749/2.732	2.569/2.557	2.569/2.557	-	-	-	-
C ₄ a	2.827/2.811	2.763/2.754	2.593/2.578	2.533/2.527	-	-	-	-	-	-
C ₄ b	2.720/2.700	2.692/2.682	2.690/2.678	-	-		-	-	-	-
C ₄ c	2.785/2.769	2.663/2.654	-	-	-	-	-	-	-	-
C ₆	2.820/2.818	2.640/2.637	-	-	-	-	-	-	-	-

Table S2: Distinct U-N bond lengths in Angstrom for complexes optimised using the PBE exchange-correlation functional in the gas phase/*DCM*. Experimental data obtained from refs: a) 44 , b) 45 .

	r _{U-N1}	r _{U-N2}	r _{U-N3}	r _{U-N4}	r _{U-N5}	r _{U-N6}	$\overline{r_{U-N}}$
C ₀	2.538/	2.538/	2.530/	2.538/	2.538/	2.530/	2.535/
	2.534	2.534	2.523	2.534	2.534	2.523	2.530
C ₂ b′	2.602/	2.601/	2.790/	2.785/	2.726/	2.724/	2.704/
	2.586	2.586	2.773	2.766	2.716	2.710	2.689
C ₄ a	2.615/	2.859/	2.788/	2.546/	2.788/	2.859/	2.742/
	2.599	2.842	2.777	2.539	2.777	2.842	2.723
C ₆	2.854/	2.661/	2.661/	2.854/	2.661/	2.661/	2.725/
	2.817	2.637	2.637	2.817	2.637	2.637	2.697

Table S3: U-N bond lengths in Angstrom for complexes optimised using the B3LYP exchange-correlation functional in the gas phase/*DCM*.

	r _{U-01}	r _{U-02}
C_0	1.781/1.794	1.871/1.794
C ₂ b′	1.766/1.777	1.766/1.777
C ₄ a	1.762/1.770	1.762/1.770
C ₆	1.764/1.796	1.761/1.790

Table S4: U-O bond lengths in Angstrom for complexes optimised using the B3LYP exchange-correlation functional in the gas phase/*DCM*.

	ΔE	ΔE_{DA}	$E_{\rm DL}$	E DU
C ₀	-29.13	-30.23	0.69	0.40
C ₂ b′	-27.78	-29.02	0.96	0.28
C ₄ a	-26.00	-28.18	1.93	0.25
C ₆	-25.76	-27.84	1.83	0.25

Table S5: Molecular binding energies and deformation adjusted binding energies, with deformation energies of the UO_2^{2+} unit and the ligands, all given in eV. Data was obtained using the B3LYP *xc*-functional, and due to the simple COSMO solvation model being a rather poor approximation for solvated uncoordinated UO_2^{2+} , are given in the gas phase only.

	C ₀	C ₂ b'	C ₄ a	C ₆
$\sum \rho_{U-N}$	0.356	0.264	0.251	0.251
$\nabla^2 \rho_{U-N}$	0.148	0.108	0.102	0.103
$\sum H_{U-N}$	-0.044	-0.022	-0.021	-0.019
$\sum \delta(U,N)$	2.226	1.922	1.838	1.820

 Table S6: various topological parameters measured at the bond critical points of the U-N bonds, measured in atomic units (a.u) given as total or average values, and total indices of delocalisation between the U-N atomic basins given as a proportion of a pair of electrons. Data is from structures calculated using the PBE functional including the effects of solvation in DCM using COSMO.

	C ₀	C ₂ b'	C ₄ a	C_6	
				U-O ₁	U-O ₂
ρ _{U-0}	0.281	0.290	0.294	0.295	0.292
$\nabla^2 \rho_{U-0}$	0.323	0.254	0.316	0.325	0.310
H _{U-0}	-0.238	-0.316	-0.261	-0.263	-0.259
δ(U,O)	1.872	1.928	1.946	1.934	1.935

Table S7: Various topological parameters measured at the bond critical points of the U-O bond measured in atomic units (a.u). Data is from structures calculated using the PBE *xc*-functional including the effects of solvation in DCM using COSMO.

	C ₀	C ₂ b'	C ₄ a	C ₆
$\sum \rho_{U-N}$	0.344/0.352	0.244/0.255	0.230/0.238	0.234/0.248
$\nabla^2 \rho_{U-N}$	0.152/0.151	0.105/0.107	0.098/0.100	0.101/0.106
$\sum H_{U-N}$	-0.040/-0.043	-0.017/-0.020	-0.016/-0.018	-0.016/-0.019
$\sum \delta(U,N)$	1.970/2.053	1.629/1.740	1.558/1.627	1.561/1.665

Table S8: various topological parameters measured at the bond critical points of the U-N bonds, measured in atomic units (a.u) given as total or average values, and total indices of delocalisation between the U-N atomic basins given as a proportion of a pair of electrons. Data is from structures calculated using the B3LYP functional in the gas phase/DCM.

	C ₀	C ₂ b'	C ₄ a	C ₆	
				U-O ₁	U-O ₂
ρ _{U-0}	0.304/0.295	0.317/0.308	0.320/0.313	0.320/0.299	0.319/0.295
$\nabla^2 \rho_{U-0}$	0.274/0.278	0.265/0.267	0.264/0.266	0.273/0.281	0.257/0.265
H _{U-0}	-0.281/-0.265	-0.303/-0.287	-0.309/-0.297	-0.309/-0.271	-0.307/-0.265
δ(U,O)	1.872/1.831	1.936/1.897	1.945/1.915	1.936/1.890	1.926/1.887

Table S9: Various topological parameters measured at the bond critical points of the U-O bond measured in atomic units (a.u). Data is from structures calculated using the B3LYP xc-functional in the gas phase/DCM.

C ₆	PBE, DCM	B3LYP, gas phase	B3LYP, DCM
$ ho_{O-Cm}$	0.009	0.008	0.009
$\nabla^2 \rho_{O-Cm}$	0.038	0.035	0.038
H _{O-Cm}	0.002	0.002	0.002
$\delta(0_1, Cm)$	0.034	0.029	0.033
$\delta(O_2,N)$	0.092	0.087	0.092

Table S10: Various topological parameters measured at the bond critical points of the O-C_m interactions of C₆, given as average values. Measured in atomic units (a.u). Data is from structures calculated using the PBE *xc*-functional including the effects of solvation in DCM with COSMO and the B3LYP *xc*-functional both in the gas phase and including the effects of solvation in DCM with COSMO.

	UO_2^{2+}	C ₀	C ₂ b'	C ₄ a	C ₆
<i>N</i> (U)	88.70	89.19	89.18	89.17	89.18
<i>N</i> (O ₁)	8.65	8.90	8.89	8.87	8.87,8.86
λ(U)	86.45	86.04	86.11	86.13	86.14
λ(Ο)	7.47	7.77	7.75,7.74	7.70	7.67,7.64
δ(U,O)	2.24	1.87	1.93	1.94	1.94,1.93
$\delta(O_1,O_2)$	0.13	0.10	0.10	0.10	0.10
N(UO ₂)	106.00	106.99	106.95	106.91	106.90
$\lambda(UO_2)$	106.00	105.43	105.56	105.53	105.42
$N(\mathrm{UO}_2)$ - $\lambda(\mathrm{UO}_2)$	0.00	1.56	1.39	1.39	1.49

Table S11: Integrated properties associated with the uranyl ions of each complex given to 2 decimal places. Data from complexes optimised using the PBE *xc*-functional including the effects of solvation in DCM with COSMO.

	UO2 ²⁺	C_0	C ₂ b'	C ₄ a	C_6
<i>N</i> (U)	88.71	88.98	88.96	88.95	88.96
N(O)	8.65	8.91	8.89	8.88	8.88
λ(U)	86.44	86.01	86.09	86.11	86.12
$\lambda(O_2)$	7.45	7.80	7.76	7.73	7.71,7.69
δ(U,O)	2.27	1.87	1.94	1.95	1.94,1.93
$\delta(O_1,O_2)$	0.11	0.09	0.10	0.10	0.09
N(UO ₂)	106.00	106.81	106.74	106.72	106.72
$\lambda(UO_2)$	106.00	105.44	105.59	105.57	105.47
$N(\mathrm{UO}_2)$ - $\lambda(\mathrm{UO}_2)$	0.00	1.37	1.15	1.15	1.26

Table S12: Integrated properties associated with the uranyl ions of each complex given to 2 decimal places. Data from complexes optimised using the B3LYP *xc*-functional in the gas phase.

	UO2 ²⁺	C ₀	C ₂ b'	C ₄ a	C_6
<i>N</i> (U)	88.56	88.98	88.96	88.95	88.98
N(O)	8.72	8.95	8.92	8.91	8.91,8.90
λ(U)	86.37	86.00	86.08	86.10	86.11
λ(Ο)	7.57	7.86	7.81	7.77	7.74,7.71
$\delta(U,O_1)$	2.19	1.83	1.90	1.91	1.89
$\delta(O_1,O_2)$	0.11	0.09	0.09	0.09	0.09
N(UO ₂)	106.00	106.88	106.81	106.77	106.79
$\lambda(\mathrm{UO}_2)$	106.00	105.46	105.59	105.56	105.43
$N(\mathrm{UO}_2)$ - $\lambda(\mathrm{UO}_2)$	0.00	1.42	1.22	1.21	1.36

Table S13: Integrated properties associated with the uranyl ions of each complex given to 2 decimal places. Data from complexes optimised using the B3LYP *xc*-functional including the effects of solvation in DCM with COSMO.

Figure S1: Scatter plots of the reduced density gradient against $\rho(\mathbf{r})$ sgn (λ_2) coloured with values of $\rho(\mathbf{r})$ sgn (λ_2) from the isosurfaces in Figure 9. Horizontal lines indicate isosurface value of $s(\mathbf{r}) = 0.35$ a.u. from Figure 9.

Figure S2: Close up view of the U-N bonding region in a density difference distribution from C_0 , showing teardrop-shaped regions of accumulation (blue) and depletion (green) around the uranium atom.