
Electronic Supplementary Information 

Dangerous liaisons: anion-induced protonation in phosphate-
polyamine interactions and their implications for charge states of 
biologically relevant surfaces   
G. Laucirica,a W. A. Marmisolléa and O. Azzaronia 

 

 

1. Size of the microparticles by DLS 

The size of the SPs was determined by DLS employing a Zetasizer Nano (Nano ZSizer-ZEN3600,  Malvern, 

U.K.) in water at 25ºC employing a distribution fitting method. The size of the unmodified SPs was 

determined to be 250+60 nm (Fig. SI 1). 

 

Fig. SI 1. Size distribution of the SiO2 microparticles determined by DLS in water at 25°C. 

 

2. Experimental results of the zeta-potential  

The zeta-potential of the SiO2@PAH microparticles (full circles) strongly depends on the presence of 

phosphate anions as shown in Fig. SI 2 for solutions of different pH. As a control experiment, we have also 

measured the effect of Pi concentration on the zeta-potential of bare microparticles (empty circles). As 

shown in Fig. SI 2, no significant changes are observed in this case. In pH conditions, the results for 

SiO2@PAH microparticles can be satisfactorily fitted to eq. 14 (dash lines in Fig. SI 2). 
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Fig. SI 2. Zeta-potential of the bare SiO2 microparticles (empty circles) and SiO2@PAH microparticles (full circles) as a function of 

the phosphate concentration in 0.1 KCl solutions of several adjusted pH values. Dash line means the fitting to eq. (14). 



3. A model for Phosphate Binding to Amine Units 

Let us consider the dissociation equilibriums of phosphates in solution 
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Let [Pi] be the total phosphate bulk concentration, that is 
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The distribution functions for phosphate species in solution can be then calculated as 
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Employing the preceding values for the dissociation constants, the distribution functions as a function of 

pH can be calculated as shown in Fig. SI 3. 

 

Fig. SI 3. Calculated distribution functions for phosphate species as a function of pH. 

According to these plots, the main phosphate species in the range 4-10, are singly and doubly charged 

anions.  



Let us assume that the association equilibriums between phosphate species and amines is mainly 

electrostatically driven. Taking into account that the only phosphate species whose concentrations are 

appreciable in this pH range are H2PO4
- and HPO4

2-, the whole description of the binding and proton 

dissociation equilibriums in the range 4-10 can be achieved by considering the following equilibriums 

3 2 4 3( ) ( )NH H PO NH Pi      11K   (1) 

2
3 4 3( ) ( )NH HPO NH Pi       12K   (2) 

Here parentheses are employed to designate surface species. By considering Langmuir-type of binding 

isotherms, expressions of the former constants can be deduced 
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Here it is important to note that, although we just use square brackets for concentrations, they mean bulk 

concentrations for species in solution ( 2 4H PO   and 2
4HPO    ) and surface concentrations for the amino 

or amino-bound surface groups ( 2( )NH ; 3( )NH    ; 3( )NH Pi ; 3( )NH Pi    ).  

Let us now consider the proton dissociation equilibrium of the surface amino groups 

3 2( ) ( )NH NH H      aK   (3) 

And it will be useful to define the fraction of protonated amine as 
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By employing an extended Henderson-Hasselbalch equation (see next section), it is possible to write
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where no  is an exponent that accounts for the  pKa distribution of the surface groups as it is explained in 

the next section. 

 

 



Also the proton dissociation of bound phosphate species could be considered 

3 3( ) ( )NH Pi NH Pi H    appK   (4) 

By employing equilibriums (1), (2) and (SI 2), it is easy to prove that 12
2
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 . It will also be useful to 

define the fraction of negatively charged associated species 

  3 3 3( ) / ( ) ( )NH Pi NH Pi NH Pi  
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Once again, an extended Henderson-Hasselbalch model for equilibrium (4) yields 
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where napp  accounts for the  pKa distribution of the surface groups. 

In the pH range 4-10 it is possible to consider that 

  2
2 4 4Pi H PO HPO              (SI 10) 

whereas the total surface concentration of bound phosphates can be written as  
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where we have employed eqs SI 6 and SI 7.  

The global phosphate binding could be described as follows 

3 3 3( ) ( ) ( )NH Pi NH Pi NH Pi     BK   (SI 12) 
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Using eq. SI 11,  
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which can be simplified to 

11 1 12 2BK K K          (7) 



4. Distribution of Binding Constants and napp 

Both, heterogeneity of adsorption energy of the binding sites and lateral ligand interactions can be 

modeled by employing an extension of the Langmuir equation that is often referred as Langmuir-

Freundlich equation,  
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The parameter m is called heterogeneity index. For an ideal adsorption, m=1 and it reduces to the Langmuir 

model. Typically, when the coefficient is higher than 1, cooperativity is said to take place and the equation 

is also referred as Hill’s equation.1,2 For values lower than 1, negative cooperativity is said to occur and it is 

also assigned to the existence of lateral repulsive interactions between bound species.3  

Particularly, when equation eq. SI 15 refers to the protonation equilibrium it is also named as extended 

Henderson-Hasselbalch equation1 and it is often employed for the mathematical description of the acid-

base equilibrium in polyelectrolytes4,5 and surface confined groups,6 and it is usually considered as an 

apparent number of protons (napp) that effectively bind to each binding site. Although other advanced 

models can be employed for the treatment of heterogeneous or interacting binding systems, the use of 

napp allows the numerical analysis of the experimental data keeping the simplicity of the equations.  

Note that for this kind of model, the binding constant (as defined for an ideal binding equilibrium) has not 

a single value but a distribution of them. Even, the heterogeneity index has been theoretically related to 

the width of the adsorption energy distribution by Sips.7  

 

5. The Expression of the zeta-potential 

Being zeta-potential a measure of the surface charge, we could consider that it is proportional to the 

surface concentrations of charged species. By taking into account the charged surface species, it is possible 

to write  

 3 3( ) ( )NH NH Pi              (8) 

By employing eq. SI 13, the former expression can be written as 

 3( ) (1 )BNH K Pi 
        (SI 16) 

Let 
2NH  be the total surface concentration of amino groups,  
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Using eq. SI 11-20,  
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so that 
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By replacing this expression into eq. SI 16,  
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In the absence of binding anions,   0Pi   and 
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whose introduction into eq. (9)  allows writing 
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Taking into account the previous equations, the experimental dependence of the change of the zeta-

potential on the phosphate concentration in solution ([Pi]) could be written as   
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where we have defined the parameters A and B as 
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6. Fitting of the values of A and B 

Simplifications could be achieved by considering just the ratio 

( )( )/ (1 10 ) / (1 10 )appo
n pH pKappn pH pKaA B     ,   (SI 19) 

However, calculating this quotient from fitted values of A and B has a relatively high error and values are 

not secure for further fittings. An iterative procedure was employed to obtain a single set of parameters (

12 11/K K  and napp) to satisfactorily fit the experimental results for both A and B. The results for A / B in the 

range of pH  4-9 were employed for the initial guess of 12 11/K K  and napp (Fig. SI 4). Then, these values 

were employed for the fittings of A and B and then recalculated in an iterative way. 

 

Fig. SI 4. Calculated values of the quotient A / B from the fitted parameters as a function of pH. Dash line means the calculated 

values employing the eq. SI 19. 
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