SUPPORTING MATERIAL

Size-exclusion chromatography (SEC) measurements

Size-exclusion chromatography (SEC) was used to evaluate the fraction of oligomeric species at different BSA concentrations. Samples (100 µl) with different protein content were pre-incubated for 10 min at room temperature and then subjected to a Superdex 200 Increase 10/300 column (GE Healthcare) equilibrated with a filtrated and degassed 50 mM Tris-HCl buffer, pH 7.6, containing 100 mM NaCl, 0.1 mM EDTA, 5% glycerol and 3 mM ME. The column was operated at 25°C at 1.5 ml/min flow rate using a chromatographic ProStar325 UV/Vis HPLC/FPLC system (Varian Inc.). The elution profiles were monitored by absorbance at 280 nm.

Zeta-potential measurements

Zeta-potential measurements were performed with a Malvern Instruments Zetasizer Nano-Z instrument (U.K.). To obtain zeta potential (ζ) the Henry equation, which includes the Smoluchowski approximation, was applied. The refractive index was fixed to 1.45.

Guinier analysis

The averaged gyration radius for general case of polydisperse solution can be defined by the relation [44]:

$$R_{0M}^{2} = \frac{\sum_{k}^{k} p_{k} n_{k}^{2} R_{0k}^{2}}{\sum_{k}^{k} p_{k} n_{k}^{2}},$$
(1)

where n_k – full number of electrons in particle of type-*k* and p_k – proportion of this type. Let's consider the case when we have mix solution with equal proportions of BSA monomers and dimers $p_1 = p_2 = 0.5$ (provided that both components follow Guinier law separately). If we take R_g for BSA monomer and dimer from bioSAXS data base <u>https://www.sasbdb.org/data/SASDBJ3/</u> and <u>https://www.sasbdb.org/data/SASDBK3/</u> as 2.8 nm and 3.9 nm respectively, then averaged gyration radius (from (1)) is equal $R_{0M} = 3.7$ nm. As one can see it is quite close to R_g of BSA dimer. As the Guinier analysis is mostly evaluative we can take effective averaged R_g equal to R_g of dimers in most cases. At larger angles the contribution from aggregates into SAXS curve is effectively zero, and the apparent gyration radius is practically equal to $R_g^{monomer}$, so there is no need to subtract the slopes for R_g determination [44] (pp.149-151).

Unfortunately, it's impossible to automatically separate averaged gyration radius onto components in our case, because information about dimer proportion in solution p_k and about presence of trimers and higher-order oligomers is lacking. The dimers p_k could have been determined from (1), if there had been no influence on R_g from oligomers of higher order. In our case we have higher order oligomers appearance (which is seen, for example, in fig.3). The only way to qualitatively evaluate gyration radii of monomers and "averaged" aggregates in solution is manually define the point of decided concavity on Guinier plot for each temperature of solution and to estimate the corresponding line slopes.

Basically, there is another way to check the reliability of proper choice of two q-ranges in Guinier plot: to compare R_g , calculated from lower q-range with R_g , calculated from P(r) function. If the values are close, then Guinier approximation is still good enough. In our analysis the values of R_g^{aggreg} and R_g^{real} are close enough which is demonstrated in Fig.2. Of course, all that considerations could be applied only in case when it is intuitively clear where the point separating first and second q-range is located.

Fig.S1. The Guinier plot of solution B (c = 20 mg/ml) at room temperature and at temperature in vicinity of BSA melting point (T = 60°C).

As it is seen from fig.S1 (Guinier plots for solution B at room temperature and at temperature of BSA denaturation), the boundary point can be clearly identified, and both components satisfy Guinier law separately.

Fig.S2. Optical scheme of DICSY beamline includes 3 pair of beam defining slits, monochromator (λ = 1.6 Å) and 2D detector Pilatus3 1M.

Fig.S3. First 60 min of radiation damage test at room temperature

S4. Comparison of oblate ellipsoid model and crystallographic model of BSA monomer

Fig.S5. Structure factors for all solutions calculated in frames of DLVO potentials on base of potentials, found from global fitting procedure.

Fig.S6(c) SAXS data at 70 °C

<i>T</i> , ⁰C		D _{max} , nr	n	R	<i>e^{real}</i> , n	m	R_{σ}^{m}	nonomer	nm	R	^{aggreg} , 1	nm	V_{Porod} , nm ³		<i>I(0)</i> , a.u.			
mg/ml	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40
25	11.2	8.3	7.2	3.2	2.7	2.6	2.9	2.8	2.7	3.1	2.8	2.5	133.3	93.9	76.7	767.5	1013	1029
30	12.1	8.8	7.7	3.5	2.8	2.6	2.9	2.8	2.7	3.3	2.7	2.5	140.5	95	79	774.8	1013	1056
35	10.6	9.2	7.7	3.2	2.8	2.6	2.9	2.8	2.7	3.1	2.8	2.6	130.3	96.5	78.4	727.9	1023	1008
40	10.8	9.6	7.6	3.2	2.9	2.6	2.9	2.8	2.7	3.2	2.9	2.5	132.8	98	77.6	721.2	1054	953.6
45	12.3	9.9	7.6	3.5	3	2.6	2.9	2.8	2.7	3.3	3	2.5	142.4	98.9	78.6	728.4	1072	935.5
50	13.8	15.1	7.6	3.9	3.4	2.6	2.9	2.8	2.7	3.5	3.1	2.6	156.8	116.6	78	753.4	1153	919.3
55	14.9	18	7.8	4.1	4.5	2.6	3	2.9	2.6	3.5	3.7	2.6	154.7	169	77.2	751	1565	876.9
60	14.3	18.2	8.3	4.4	5.6	2.7	3	3	2.6	3.9	5	2.7	188.8	358.9	79	857.3	2996	761
65	15.8	20.5	14	5.4	6.6	4.3	3.2	3.4	2.7	5	6.2	3.5	374	1035	163.9	1307	6862	1735
70	21.5	28	18.7	6.4	8.3	5.9	3.5	3.8	3.1	6.1	6.5	5.2	1085	1845	478	2637	6030	2915

Table.S1. Parameters table for solution B (BSA pH 7.4, I = 0.1M).

T, ⁰C	1	D _{max} , nr	n	R	<i>, ^{real}</i> , n	m	R_{σ}^{m}	onomer,	nm	R	,aggreg	nm	V_{Porod} , nm ³		<i>I(0)</i> , a.u.			
mg/ml	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40
25	14.5	13.7	7.3	4.1	3.2	2.5	2.5	2.7	2.6	3.6	2.9	2.5	140.6	107.3	79	758	3512	4870
30	16.5	13.4	7.3	4.4	3.3	2.5	2.6	2.7	2.6	3.6	3	2.5	138.6	111.7	79	769	3482	4837
35	15	13.8	7.4	4	3.3	2.5	2.5	2.7	2.6	3.6	3	2.6	140	114	80	766	3518	4851
40	15.3	13.7	7.4	3.9	3.3	2.5	2.5	2.7	2.6	3.2	3	2.6	123	113	80	643	3413	4822
45	15.5	13.4	7.4	4	3.3	2.5	2.6	2.6	2.6	3.3	3	2.6	128	104	81	647	3425	4808
50	16.3	13.4	7.5	4	3.4	2.5	2.5	2.6	2.6	3.2	3	2.6	115	108	80	620	3384	4831
55	17.4	13.4	7.6	4.1	3.3	2.5	2.5	2.6	2.6	3.3	3	2.6	120.3	104	81	635	3319	4770
60	22	13.5	8	5.4	3.5	2.6	2.5	2.6	2.6	3.5	3.1	2.67	157	111	82	790	3438	4802
65	25	20.6	14.5	7.5	5.1	3.6	2.5	2.7	2.6	4	3.7	3.1	298	167.4	109	1328	4951	5703
70	27	23.7	18.4	7.8	7	5.3	2.7	2.9	2.8	5.5	5	4.6	1023	699	267	3245	13960	12970

Table.S2. Parameters table for solution A (BSA pH 7.4, I = 0.5M).

T, ⁰C		D _{max} , nn	n	R	<i>^{real}</i> , n	m	R_{σ}^{m}	nonomer	nm	R	^{aggreg} , 1	nm	V_{Porod} nm ³		<i>I(0)</i> , a.u.			
mg/ml	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40	10	20	40
25	10	8.7	7.8	3	2.8	2.7	2.8	2.9	2.8	2.9	2.5	2.2	99.5	89.5	89	172	1271	909
30	10.9	8.8	7.9	3	2.7	2.7	2.9	2.8	2.8	2.9	2.6	2.4	108	89	91	171	1246	907
35	9.9	8.9	7.9	3	2.8	2.7	2.9	2.8	2.8	2.9	2.6	2.6	107	89	88	171	1246	837
40	10.9	8.2	7.9	3.1	2.7	2.7	2.9	2.8	2.7	3	2.6	2.6	115	86	87	181	1257	798
45	11.1	8	7.9	3.2	2.6	2.7	2.9	2.8	2.7	3	2.6	2.6	120	85.6	88	191	1216	787
50	11.3	8.1	7.8	3.3	2.7	2.7	2.9	2.8	2.7	3.1	2.6	2.6	124	84	87	187	1200	780
55	11	8.1	8	3.2	2.7	2.7	2.9	2.8	2.7	3	2.6	2.6	118	84	89	183	1200	790
60	11.4	9.7	12.6	3.4	2.9	3.8	2.9	2.9	2.6	3.2	3	3.5	132	95	159	197	1285	1220
65	23.3	23.3	14.5	6.5	5.1	4.7	3.1	3	2.5	3.9	4	4.6	389	244	333	572	2629	2173
70	23.3	19	16.4	6.9	5.7	5.4	3.1	3.1	2.3	4.6	5.2	5.5	675	607	687	852	5279	3823

Table.S3. Parameters table for solution C (BSA pH 9.0, I = 0.1M).

Fig.S7. $R_g(T)$ dependencies calculated by analyzing the two lines slope at Guinier plot in first ($R_g^{monomer}$) and second (R_g^{aggreg}) Guinier region and by P(r) function (R_g^{real}) for pH 7.4, I = 0.5M. Plots A, B, C and D corresponding to protein concentrations c = 0; 10; 20 and 40 mg/ml, respectively.

Fig.S8. $R_g(T)$ dependencies calculated by analyzing the two lines' slope at Guinier plot in the first $(R_g^{monomer})$ and the second (R_g^{aggreg}) Guinier region and by P(r) function (R_g^{real}) for pH 9.0, I = 0.1M. Plots A, B, C and D corresponding to protein concentrations c = 0; 10; 20 and 40 mg/ml, respectively.

Fig.S9. Example of Gaussian decomposition of P(r) function for zero concentration (solution B), MDR \approx

Fig.S10. Elution profiles for 10 mg/mL and 40 mg/mL BSA solutions obtained using SEC. MDR decreased by a factor of 1.5 with concentration growth.

Fig.S11. Dependence of the Q_1 parameter versus temperature (eq 3).

		$J(k_BT)$		ellipsoid axis, Å					
<i>T</i> ,⁰C	c=10mg/mL	c=20mg/mL	c=40mg/mL	c=10mg/mL	c=20mg/mL	c=40mg/mL			
25	5.2	1.6	1.0	20x42x50	20x41x52	20x42x50			
50	10.3	3.5	1.3	17x38x40	20x43x43	19x41x48			
55	11.0	3.2	1.5	18x40x45	20x43x43	20x42x46			
60	13.9	3.9	1.8	19x41x42	21x43x44	16x39x44			
65	19.5	7.2	3.0	18x43x43	16x42x41	20x42x48			
70	23.3	12.8	4.7	10x73x75	20x43x48	19x41x140			

Table.S3. Parameters of protein-protein interaction potentials and dimensions of ellipsoidal protein modelfor solution A. T – solvent temperature, J – attractive potential depth.

		$J(k_BT)$		ellipsoid axis, Å					
<i>T</i> ,⁰C	c=10mg/mL	c=20mg/mL	c=40mg/mL	c=10mg/mL	c=20mg/mL	c=40mg/mL			
25	8.5	6.3	3.8	17x42x42	15x42x40	17x48x41			
50	9.0	5.8	5.3	19x39x57	19x42x49	17x44x41			
55	9.2	5.8	5.5	19x39x59	18x41x48	17x45x40			
60	8.0	7.3	8.3	16x38x62	18x43x49	17x65x41			
65	24.0	10.4	8.7	19x42x58	14x44x70	17x70x70			
70	28.9	20.9	8.5	23x54x65	17x67x62	17x70x75			

Table.S4. Parameters of protein-protein interaction potentials and dimensions of ellipsoidal protein model for solution C. T – solvent temperature, J – attractive potential depth.

Fig.S12. P(r) functions for solution B at BSA concentrations 10/20/40 mg/ml, calculated on base

of I(q) / S(q) curves.

Fig.S13. Assessment of dimer formation for oblate ellipsoids using P(r) function analysis. (a) parallel formation, (b) linear formation, (c) T-type, (d) L-type (adapted from book of Glatter, Kratky [45]).