Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic Supplementary Information

Thermal degradation of luminescence in inorganic perovskite CsPbBr₃

nanocrystals

Xi Yuan,^a Xuemin Hou,^a Ji Li,^a Chaoqun Qu,^a Wenjin Zhang,^b Jialong Zhao^{*a,c}, and Haibo Li^{*a}

^aKey Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China. Email: zhaojl@ciomp.ac.cn (JL Zhao); lihaibo@jlnu.edu.cn (HB Li)

^bXingzi New Material Technology Development Co., Ltd., Shanghai 200333, China ^cCollege of Physics, Jilin Normal University, Siping 136000, China.

Fig. S1 PL spectra of CsPbBr₃ NC492 at 300 K. The black lines represent the PL spectra of the CsPbBr₃ NCs before heating to 320 K (a), 340 K (b), 360 K (c), and 400 K (d), and the red lines refer to those of the CsPbBr₃ NCs after cooling from the designed temperature to 300 K.

Fig. S2 Normalized EL spectra of the LEDs based on CsPbBr₃ NC492 (a) and NC517 (b) via different operation time. The devices were operated at a current of 20 mA.

Fig. S3 Temperature-dependent PL spectra of CsPbBr₃ NC517 films annealed at 300 K (a), 320 K (b), 340 K (c), 360 (d), 380 (e), and 400 K (f).

Fig. S4 Temperature-dependent PL intensities (a), peak energies (b), and linewidths (c) of CsPbBr₃ NC517 films annealed at different temperatures.