Electronic Supplementary Information (ESI)

Structures and energetics of hydrated deprotonated *cis*-pinonic acid anion clusters and their atmospheric relevance

Gao-Lei Hou,^a Jun Zhang,^b Marat Valiev*a and Xue-Bin Wang*a

^aPacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MS K8-88, Richland, Washington 99352, USA

^bDepartment of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Electronic mail: xuebin.wang@pnnl.gov; marat.valiev@pnnl.gov

Figure S1. The 20 K NIPE spectrum of bare *cis*-pinonate at 266 nm.

Figure S2. Seven low-lying conformers of bare *cis*-pinonate optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S3. Complete list of the isomers of $cPA^{-}(H_2O)_1$ optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S4. Complete list of the isomers of $cPA^{-}(H_2O)_2$ optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S5. Complete list of the low-lying isomers of $cPA^{-}(H_2O)_3$ optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S6. Complete list of the low-lying isomers of $cPA^{-}(H_2O)_4$ optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S7. Complete list of the low-lying isomers of $cPA^{-}(H_2O)_5$ optimized at B3LYP/6-31++G(d,p) level of theory. Relative energies are obtained at the same level and are in kcal/mol.

Figure S8. The Rayleigh light scattering properties of the *cis*-pinonate hydrates at three different theoretical levels: the isotropic mean $(\bar{\alpha})$ (a), and anisotropic ($\Delta \alpha$) polarizabilities (b); as well as the Rayleigh light scattering intensities of natural light (R_n) (c) and depolarization ratios (ρ_n).

Methods	VDE (eV)		
Experiment	3.82 ± 0.05		
	iso1	iso2	
B3LYP/6-31++G(d,p)	3.83	4.10	
B3LYP/6-311++G(d,p)	3.86	4.13	
B3LYP/maug-cc-pVTZ	<mark>3.83</mark>	<mark>4.11</mark>	
M06-2X/6-311++G(d,p)	4.02	4.30	
M06-2X/maug-cc-pVTZ	4.05	4.53	
PW91/6-311++G(d,p)	3.56	3.67	
PW91/maug-cc-pVTZ	3.54	3.64	

Table S1. Comparison of experimental VDE to calculated ones for the bare cPA^- at different theoretical levels. The structure is optimized with B3LYP/6-31++G(d,p) method. The highlighted entry shows the theoretical method and calculated values using this method that agree best with the experiments.

Methods	TDE (eV)	VDE (eV)
Experiment ^a	4.08 ± 0.05	4.3 ± 0.1
B3LYP/6-31++G(d,p) // B3LYP/6-31++G(d,p)	4.15	4.41
B3LYP/6-311++G(d,p) // B3LYP/6-31++G(d,p)	4.15	4.43
B3LYP/aug-cc-pVTZ // B3LYP/6-31++G(d,p)	4.07	4.36
B3LYP/maug-cc-pVTZ // B3LYP/6-31++G(d,p)	<mark>4.08</mark>	<mark>4.37</mark>
M06-2X/6-311++G(d,p) // B3LYP/6-31++G(d,p)	4.30	4.79
M06-2X/aug-cc-pVTZ // B3LYP/6-31++G(d,p)	4.28	4.76
M06-2X/maug-cc-pVTZ // B3LYP/6-31++G(d,p)	4.29	4.77
PW91/6-311++G(d,p) // B3LYP/6-31++g(d,p)	3.97	4.12
PW91/aug-cc-pVTZ // B3LYP/6-31++G(d,p)	3.89	4.06
PW91/maug-cc-pVTZ // B3LYP/6-31++G(d,p)	3.90	4.07
CCSD(T)/6-311++G(d,p) // B3LYP/6-31++G(d,p)	3.96	4.22
CCSD(T)/aug-cc-pVTZ // B3LYP/6-31++G(d,p)	4.19	4.45
CCSD(T)/ maug-cc-pVTZ // B3LYP/6-31++G(d,p)	4.11	4.37
PW91/6-311++G(d,p) // PW91/6-311++G(d,p)	3.76	4.11

Table S2. Comparison of experimental TDE and VDE to calculated ones for $CH_3CO_2^{-}(H_2O)_1$ at various theoretical levels. The highlighted entry shows the theoretical method and calculated values using this method that agree best with the experiments.

^aThe experimental values are taken from Chem. Phys. Lett. 477, 41 (2009).

Table S3. Thermochemical parameters for the sequential hydration of *cis*-pinonate and evaporation rates of the water molecule from the *cis*-pinonate hydrates calculated at ambient conditions (298.15 K and 1 atm).

n	BE ^a (ko	al/mol)	ΔH ^a (kc	al/mol)	$\Delta G^{a}(k\alpha)$	al/mol)	ΔS^a (cal	/mol/K)	γ (s ⁻¹) ^b	
	$cPA^{-}(H_2O)_{n-1} + H_2O \rightarrow cPA^{-}(H_2O)_n$									
	Calc. ^c	Calc. ^d	Calc. ^c	Calc. ^d	Calc. ^c	Calc. ^d	Calc. ^c	Calc. ^d	Calc. ^c	Calc. ^d
1	15.94	14.26	-16.58	-14.90	-7.49	-5.81	-30.48	-30.48	1.67×10^{5}	3.06 × 10 ⁶
2	12.89	11.82	-13.52	-12.56	-4.84	-3.79	-29.09	-29.09	1.45×10^7	9.30 × 10 ⁷
3	11.27	9.58	-12.24	-10.54	-1.36	0.34	-36.50	-36.50	5.22×10^{9}	9.86×10^{10}
4	11.20	9.52	-12.00	-10.32	-2.30	-0.62	-32.53	-32.53	1.06×10^9	1.93×10^{10}
5	10.47	9.22	-11.21	-9.97	-2.65	-1.42	-28.69	-28.69	$5.80 imes 10^8$	5.80×10^{8}

^aBinding energy, Enthalpy, Gibbs free energy, and Entropy changes are obtained by using the following equation:

$$\begin{split} & \text{BE}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] = \text{E}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n-I}] + \text{E}(\text{H}_{2}\text{O}) - \text{E}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] \text{ (with ZPE correction)} \\ & \Delta \text{H}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] = \text{H}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] - \text{H}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n-I}] - \text{H}(\text{H}_{2}\text{O}) \text{ (with ZP Enthalpy correction)} \\ & \Delta \text{S}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] = \text{S}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n}] - \text{S}[c\text{PA}^{-}(\text{H}_{2}\text{O})_{n-I}] - \text{S}(\text{H}_{2}\text{O}) \\ & \Delta \text{G} = \Delta \text{H} - \text{T}\Delta \text{S}, \text{T} = 298.15 \text{ K} \end{split}$$

^bThe evaporation rates are estimated using previously described approach. Ref. *Atmos. Chem. Phys.* **2012**, *12*, 225-235.

^cB3LYP/6-31++G(d,p) level of theory.

^dB3LYP/maug-cc-pVTZ//6-31++G(d,p) level of theory.