Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

Mechanistic Insight into Selective Catalytic Combustion of

Acrylonitrile (C₂H₃CN): NCO Formation and its Further

Transformation towards N₂

Ning Liu^{*a,b*}, Xiaoning Yuan^{*a*}, Runduo Zhang^{*a*}*, RongRong Xu^{*a*}, Yingxia Li^{*a*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China

^bChangzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, 213164, China

> Corresponding authors: <u>zhangrd@mail.buct.edu.cn</u> (Runduo Zhang) Tel: 86-10-64412054; Fax: 86-10-64419619

Microkinetic analysis	S1
Schematic reaction mechanism of AN-SCC over Cu-ZSM-5 derived from	n in-situ
DRIFTS (Scheme S1)	S3
Energy barrier of each reaction route and optimized geometrical parameters of	f models
utilized in the DFT mechanism simulations (Table S1)	S4
Simulated IR vibration frequencies of free and adsorbed acrylonitrile on 20 Z_{20} with respect of the literature report and the DRIFTS result (Table S2)	T-O-Cu-
	S6

Microkinetic analysis

Reaction rate constant (*k*) was calculated based on the harmonic transition sate theory (HTST) using the classic equation²³ as formulated in Eq. (1.1).

$$k = \frac{k_B T}{h} \left(\frac{P^{\theta}}{RT}\right)^{1-n} exp\left(\frac{-\Delta_r G_m^{-\theta}(P^{\theta})}{RT}\right)$$
(1.1),

where k_B is Boltzmann constant; $\Delta_r G_m^{\ \ensuremath{\theta}}(p^{\ensuremath{\theta}})$ stands for the standard molar activation Gibbs energy; n is the coefficient amount of the reactants as well as h, T, and R respectively denote Plank constant, temperature, and gas constant. The Eq. (1.1) can also be formulated as Eq. (1.2) according to the basic thermodynamic formula $\Delta_r G_m^{\ensuremath{\theta}}$ $(P^{\ensuremath{\theta}}) = \Delta_r H_m^{\ensuremath{\theta}}(P^{\ensuremath{\theta}}) - T\Delta_r S_m^{\ensuremath{\theta}}(P^{\ensuremath{\theta}})$, where $\Delta_r H_m^{\ensuremath{\theta}}(P^{\ensuremath{\theta}})$ and $\Delta_r S_m^{\ensuremath{\theta}}(P^{\ensuremath{\theta}})$ represent the standard molar activation enthalpy and entropy, respectively.

$$k = \frac{k_B T}{h} \left(\frac{P^{\theta}}{RT}\right)^{1-n} exp\left(\frac{\Delta_r S_m^{-\theta}(P^{\theta})}{R}\right) exp\left(\frac{-\Delta_r H_m^{-\theta}(P^{\theta})}{RT}\right)$$
(1.2)

Moreover, the activation energy (E_a) can be correlated with the $\Delta_r H_m^{\theta}$ (P^{θ}) according to the Eq. (1.3), where n₁ represents the coefficient amount of the gaseous reactants. For the condensed phase reaction the value of n₁ is 1.

$$E_a = \varDelta_r H_m^{\ \theta}(P^\theta) + \mathbf{n}_1 RT \tag{1.3}$$

Finally, we got the final reaction rate constant formulated as Eq. (1.4) by including the Eq. (1.3) into the Eq. (1.2).

$$k = \frac{k_B T}{h} e^{n_1} \left(\frac{P^{\theta}}{RT}\right)^{1-n} exp\left(\frac{\Delta_r S_m^{-\theta}(P^{\theta})}{R}\right) exp\left(\frac{-E_a}{RT}\right)$$
(1.4)

Comparing Eq. (1.4) with the Arrhenius equation, the preexponential factor (A) can be calculated as the Eq. (1.5).

$$A = \frac{k_B T}{h} e^{n_1} \left(\frac{P^{\theta}}{RT}\right)^{1-n} exp\left(\frac{\Delta_r S_m^{-\theta}(P^{\theta})}{R}\right)$$
(1.5)

The activation energy (E_a) can be calculated according to the energy barrier of each reaction step [from the reactant sate (RS) to the TS] during the DFT energy calculations. The entropy containing three contributions, vibrational, rotational, and translational degrees of freedom, was calculated by the frequency calculations of DFT at 1 atm and 298.15 K. The $\Delta_r S_m^{\theta}(P^{\theta})$ was calculated according to Eq. (1.6).

$$\Delta_r S_m^{\ \theta}(P^\theta) = S_{TS}^{\ \theta}(P^\theta) - S_{RS}^{\ \theta}(P^\theta)$$
(1.6)

$CH_2=CH-CN_{(ad)} \rightarrow CH=CH_{2(ad)} + CN_{(ad)}$	(Reaction step A1)
$CN_{(ad)} + O_{(ad)} \rightarrow NCO_{(ad)}$	(Reaction step A2)
$CH=CH_{2(ad)} + O_{2(ad)} \rightarrow C_xH_yO_z (C_2H_3OH, CH_3COOH)_{(ad)}$	(Reaction step A3)
$C_x H_y O_z + O_{2(ad)} \rightarrow CO_{2(g)} + H_2 O_{(g)}$	(Reaction step A4)
$CN_{(ad)} + H_2O_{(g)} \rightarrow CONH_{2(ad)} \rightarrow NH_{3(g)}$	(Reaction step B1)
$NH_{3(ad)} + O_{2(g)} \rightarrow N_{2(g)} + H_2O_{(g)}$	(Reaction step B2)

Scheme S1. Schematic reaction mechanism of AN-SCC over Cu-ZSM-5 derived from in-situ DRIFTS.

(distances in A, angles in ^o)						
Route	Energy Barrier/ kcal mol ⁻¹	Structures	Gas phase	<u>1</u> ª	2 ^b	3°
		Cu-N	_	1.97	1.81	1.82
		Cu-O	_	2.11	3.93	-
		Cu O C ₁ -N	1.16	1.35	1.24	1.22
		$C_1 - O$	-	1.29	1.24	1.18
		C_1 - C_2	1.43	1.46	2.14	3.17
		$C_1 - C_2$ $C_2 - C_3$	1.34	1.40	1.31	1.31
Ι	17.0	$C_2 - C_3$	1.34	111.0	155.0	1.51
		$\angle N$ -C ₁ -O	-	111.0	155.0	1//.1
		\angle N-C ₁ -C ₂	180.0	125.9	-	-
		$\angle C_1$ - C_2 - C_3	122.9	121.1	-	-
		Cu-N	-	1.82	1.90	1.90
		N-C	1.23	1.21	2.16	-
II	100.9	C-O	1.19	1.18	1.14	1.14
		∠NCO	180.0	177.6	-	-
		Cu-N ₁	-	1.97	1.87	-
		N_1-N_2	-	1.40	1.29	1.10
		N_1 - C_1	1.23	1.25	1.25	-
		C_1 - O_1	1.19	1.16	1.17	1.14
TTT	40 7	N_2-C_2	-	1.24	1.92	-
III	48.7	C_2-O_2	-	1.17	1.14	1.14
		$\angle N_l C_l O_l$	180.0	174.9	161.6	-
		$\angle N_2 C_2 O_2$	-	169.8	126.9	-
		Cu-O ₁	-	1.88	2.78	-
		O ₁ -N	-	1.38	1.21	1.15
TT 7	7.0	N-C	1.23	1.25	1.55	-
IV	7.8	C-O ₂	1.19	1.17	1.16	1.14
		$\angle NCO_2$	180	167.3	134.9	-
				2.02	2.01	
		Cu-N ₁				-
V	0.8	$N_1 - N_2$	-	1.30	1.23	1.11
		N ₁ -C	1.23	1.49	1.61	1 16
		C-O ₁	1.19	1.17	1.17	1.16

Table S1 Energy barrier of each reaction route (unit of kcal mol⁻¹) and optimized geometrical parameters of models utilized in the DFT mechanism simulations (distances in Å, angles in °)

		$ \begin{array}{c} & \\ & N_2 \text{-} O_2 \\ & C \text{-} O_2 \\ & \swarrow N_1 \text{C} O_1 \end{array} $	1.16 - 180	1.47 1.40 137.1	1.74 1.32 128.7	1.18
		$\angle C_1O_1O_2$	-	132.4	136.6	175.9
		Cu-N ₁	-	1.91	-	1.91
		N ₁ -C	1.23	1.22	1.65	-
		$C-O_1$	1.19	1.18	1.15	1.14
		N_1 - N_2	-	2.11	1.24	1.13
VI	31.0	N ₂ -O ₂	1.16	1.14	1.21	1.18
		$\angle N_1 CO_1$	180.0	176.1	129.5	-
		$\angle N_1 N_2 O$	-	-	131.8	179.8

^a Adsorption state (AS) ^b Transition state (TS)

^c Product

Vibration mode	IR frequency of gaseous AN ²⁶	Calculated IR frequency of gaseous AN	DRIFTS result of adsorbed AN	Calculated result of adsorbed ANª
$\delta_s(-CH_2)$	1416	1406	1414	1446
v(C ₂ =C ₃)	1615	1631	-	1627
$\nu(C_1 \equiv N)$	2239	2258	2267	-
v(N=C1=O)	-	-	2213	2248
$v_s(-CH_2)$	3042	3061	3035	3070
ν(-CH)	3078	3072	3077	3109
$v_{as}(-CH_2)$	3116	3148	3121	3158

Table S2 The calculated vibration frequencies of free and adsorbed acrylonitrile on 20T-O-Cu- Z_{20} with respect of the literature report and the DRIFTS result.

^aThe frequency correction factor is 0.9613