Electronic Supplementary Information

Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes

Qiaoli Chen,^a Yanyan Jia,^a Shuifen Xie,^b Zhaoxiong Xie^{*a}

 ^a State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^b College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.

E-mail: <u>zxxie@xmu.edu.cn</u>

Morphologies	ldeal Exposed Facets	Metals	Capping agents	Metal Precursors	Other reactants and/or solvent	Methods, temperature and reaction time	Referenc e
	{110}	PtCu₃	<i>N</i> -butylamine CTAC	Pt(acac)₂ Cu(acac)₂	DMF	Solvothermal synthesis, 150 °C for 10 h	26
Ŵ	{411}	Pt	Methylamine PVP	H₂PtCl ₆	DMF	Solvothermal synthesis, 160 °C for 11 h	35
	{211}	Pt	1-octylamine	Pt(acac)₂	1-octylamine	Solvothermal synthesis, 200 °C for 3 h	36
	{720}	Au	CTAC in presence of Ag⁺ ions	Au seeds HAuCl₄	AA HCI H₂O	Seeded growth, ambient temperature	40
	{110}+{100}	Pd	CTAB in presence of Cu ²⁺ ions	Pd seeds H₂PdCl₄	AA H ₂ O	Seeded growth, 40 °C for 12 h	70

Table 1 Summary of typical cases of NCs with nonconvex polyhedral structures synthesized using capping agents.

{hhl}	Au	СТАС	Au seeds HAuCl₄	AA H₂O	Seeded growth, 25 °C for 1 h	69
{110}	Au	СТАС	HAuCl₄	AA H₂O	One-step synthesis, 4–6 °C , 8 h	68
{110}	Au-Pd	СТАС	HAuCl₄ H₂PdCl₄	AA H₂O	One-step synthesis, 20 °C for 2 min and then cooled down to 6 °C, 8 h	68
/	Pd	KBr, PVP	Pd seeds Na₂PdCl₄	H₂O	Seeded growth, low temperature or low injection rate	89
{110}	Rh	PVP	Na₃RhCl ₆	AA CA TriEG	Injecting precursors to the preheated reactants and then keep at 145 °C for 3 h	67

	/	Rh-Pd	PVP, KBr	Pd seeds Na₃RhCl ₆	EG	Seeded growth, injecting Rh precursors to the preheated reactants and then stay at 140 °C for 10 min	90
--	---	-------	----------	----------------------------------	----	--	----

Notes: DMF = N, *N*- dimethyl formamide; PVP = poly(vinyl pyrrolidone); AA = L-ascorbic acid; CTAC = cetyltrimethylammonium chloride; CTAB = cetyltrimethylammonium bromide; TriEG = triethylene glycol; CA = citric acid; EG = ethylene glycol.

Table 2 Summary of typical	cases of NCs with nonconvex polyhe	edral structures from etchants mediated syn	thesis.
----------------------------	------------------------------------	---	---------

Initial shapes	Final shapes	Metals	Etchants and etching mechanism	Solvent	Temperature	Reference
	Set.	Ag	Using NH₄OH/H₂O₂ to etch away Ag atoms	A solution of PVP and water	4 °C	91
	*	Pt-Ni alloy	Using the coordination of Ni with dimethylglyoxime to etch away Ni atoms	Water and ethanol	Room temperature	92
	and the second s	Pd	Galvanic replacement Pd with H ₂ PtCl ₆ to etch away Pd atoms	Aqueous solution containing PVP and KBr	90 °C	93

Pd	Making use of the gradients of surface energy caused by heating the reverse micelle to etch away Pd atoms	Reverse micelle made of CTAB/octanol/H ₂ O	105 °C	94
----	--	---	--------	----

Table 3 Summary of typical cases of NCs with nonconvex polyhedral structures from templates directed overgrowth and etching synthesis.

Nanocages	Metals	Facets	Templates	Overgrowth condition, temperature and time	Etching condition, temperature and time	Reference
	Pt	{100}	Cubic Pd	Na ₂ PtCl ₆ solution in EG were injected into the preheated		
	Pt	{111}	Octahedral Pd	EG solvent containing Pd seeds, AA, KBr, and PVP with 4.0 mL/h, and then stay at 200 °C for another 1 h	Etching in an aqueous solution containing FeCl ₃ , KBr, PVP and HCl and stay at 100 °C for 4 h	28