SUPPLEMENTARY INFORMATION

Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks

Silvia Ortega,^a Maria Ibáñez,^{*b,c} Yu Liu,^a Yu Zhang,^a Maksym V. Kovalenko,^{b,c} Doris Cadavid^{*a} and Andreu Cabot^{*a,d}

^a Catalonia Institute for Energy Research – IREC, 08930 Sant Adrià de Besòs, Barcelona, Spain. E-mail: dcadavid@irec.cat; acabot@irec.cat

^b Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH- 8093, Switzerland. E-mail: ibanez@inorg.chem.ethz.ch

^c Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland

^d ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain

Contents

1.	State-of-the-art solution-processed ZT materials	. 2
2.	Solution-processed nanoparticle-based thermoelectric devices	. 3
3.	Electron microscopy micrographs of solution-processed nanoparticle building blocks	. 6
4.	References	. 7

1. State-of-the-art solution-processed ZT materials

Figure S1. State-of-the-art ZT values obtained from solution-processed nanoparticle-based thermoelectric materials. **p-type: 1.** $Bi_{0.5}Sb_{1.5}Te_3^{-1}$, **4.** $Bi_{0.5}Sb_{1.5}Te_3^{-2}$, **6.** $(Ag_2Te)_5(Sb_2Te_3)_5^{-3}$, **8.** PbTe-BiSbTe⁴, **9.** $AgBi_{0.5}Sb_{0.5}Se_2^{-5}$, **11.** $Cu_3Sb_{0.88}Sn_{0.10}Bi_{0.02}Se_4^{-6}$ and **12.** $AgSb_{0.98}Bi_{0.02}Se_2^{-7}$. **n-type: 2.** $Bi_2Te_{2.7}Se_{0.3}^{-1}$, **3.** $K_{0.06}Bi_2Te_{3.18}^{-8}$, **5.** $Bi_2Te_{2.5}Se_{0.5}^{-9}$, **7.** $PbTe_{0.66}Se_{0.33}^{-10}$, **10.** $PbTe-Bi_2Te_3^{-11}$, **13.** $(PbTe)_{0.72}(PbS)_{0.28}^{-12}$ and **14.** $PbS-Ag 4.4\%^{13}$

2. Solution-processed nanoparticle-based thermoelectric devices

Reference / Material	Deposition Method	Substrate	n° pairs & architecture	Output Power	Flexible?
¹⁴ Bi ₂ Te ₃ -epoxy Sb ₂ Te ₃ - epoxy	Dispenser Printing	Polyimide	50 in-plane	171.6 mV, 10.5 μW, 75 μW/cm² @ ΔT= 20 °C	Yes
¹⁵ ZnSb CoSb₃	Screen Printing	Alumina	2 through- plane	27 mV, 0.1 mW/cm ² @ ΔT= 50 °C	No
¹⁶ PbTe	Dip Coating	Glass Fibers	-	1.7 mV @ ΔT= 58 °C	Yes
17 -	Dispenser Printing	PDMS	- through- plane	7 mV, 2.1 μW @ ΔT= 19 °C	Yes
¹⁸ Bi _{0.5} Sb _{1.5} Te ₃ / Te-epoxy	Dispenser Printing	Polyimide	60 in-plane	152 μW/cm² @ ΔT= 20 °C	Yes
¹⁹ Sb _{1.5} Bi _{0.5} Te ₃ Bi ₂ Te _{2.7} Se _{0.3}	Inkjet Printing	Polyimide	3 in-plane	PF @ 75 °C p-type 77 μWm ⁻¹ K ⁻² n-type 183 μWm ⁻¹ K ⁻²	Yes
²⁰ Bi ₂ Te ₃ Sb ₂ Te ₃	Screen Printing	Glass Fabric	11 through- plane 8 through- plane	2.9 mV, 3 μW @ ΔT= 20 °C 90 mV, 3.8 mW/cm ² @ ΔT= 50 °C	Yes
21 I-doped PbTe	Dip Coating	Glass	2 in-plane	43 mV @ ΔT= 27 °C	No
²² Bi ₂ Te ₃ Sb ₂ Te ₃	Screen Printing	Polyimide	8 in-plane	36.4 mV, 40.3 nW @ ΔT= 20 °C	Yes
²³ Bi-epoxy Bi _{0.5} Sb _{1.5} Te ₃ / Te-epoxy	Dispenser Printing	Polyimide	10 in-plane	1230 μW/cm² @ ΔT= 70 °C	Yes
24 Bi ₂ Te ₃ Sb ₂ Te ₃ PEDOT:PSS	Screen Printing	Polyimide	7 in-plane	85.2 mV, 1.22 mW/cm ² @ ΔT= 50 °C	Yes
²⁵ Bi ₂ Se ₃ nanoplates/ PVDF	Drop-casting	Free-standing TE foil	N/A	90 mV @ ΔT= 1.2 °C	Yes
26 Ag ₂ Te/	Dip Coating	Nylon fibers	2 in-plane	3.5 mV, 5 nW, 0.6 μW/cm ² @ ΔT= 20 °C	Yes

Table S1. Key parameters from solution-processed nanoparticle-based thermoelectric devices.

PEDOT:PSS					
27 Bi ₂ Te ₃ Bi _{0.5} Sb _{1.5} Te ₃	Dispenser Printing	Polyimide	25 in-plane	33 μW, 2.8 W/m² @ ΔT= 20 °C	Yes
28 Cu _{1.75} Te NWs /PVDF	Vacuum Filtration	Free-standing TE foil	N/A	PF = 23 μWm ⁻¹ K ⁻² @ 25 °C	Yes
²⁹ WS ₂ NSs NbSe ₂ NSs	Vacuum Filtration/ Contact Printing	PDMS	100 through- plane	38 nW @ ΔT= 60 °C	Yes
30 Bi ₂ Te ₃ Sb ₂ Te ₃	Dispenser Printing	Polyimide	1 through- plane	1.54 nW @ ΔT= 20 °C	Yes
³¹ Ca₃Co₄O ₉	Scroop Drinting	Alumina	10 in-plane	PF = 0.16 mWm ⁻¹ K ⁻² @ 300 °C	No
³¹ (ZnO)₅In₂O₃	Screen Printing	Alumina	10 in-plane	PF = 1.4 μWm ⁻¹ K ⁻² @ 300 °C	No
³² Bi _{0.5} Sb _{1.5} Te ₃	3D Printing	Free-standing TE pellet	N/A	ZT = 0.12 @ 43 °C	No
³³ Bi ₂ Te _{2.8} Se _{0.2}	Screen Printing	Polyimide	5 in-plane	ZT = 0.43 @ 175 °C 6.1 μW/cm ² , 4.1 mW/cm ² @ ΔT= 60 °C	Yes
³⁴ TiS₂/ hexylamine	Drop-casting	Free-standing TE foil	N/A	32 μW/cm² @ ΔT= 20 °C	Yes
35	Dip Coating	Cellulose paper	3 in-plane	21.1 mV @ ΔT= 33 °C	Yes
Bi-doped PbTe QDs			3 through- plane	14.2 mV @ ΔT= 33 °C	Yes
³⁶ Bi ₂ Te ₃ Sb ₂ Te ₃	Dispenser Printing	Silk Fabric	12 through- plane	10 mV, 15 nW @ ΔT= 35 °C	Yes
37	Brush-painting	Polyimide or Glass	5 in-plane	2.43 mW/cm ² @ ΔT= 50 °C	Yes/No
Bi ₂ Te ₃ / Sb ₂ Te ₃ ChaM		Alumina	1 through- plane	4 mW/cm² @ ΔT= 50 °C	No
38 Ag Ni	Screen Printing	Polyimide	15 in-plane	22 mV, 14.6 μW @ ΔT= 113 °C	Yes
39	Screen Printing	Polyimide	8 in-plane	26.6 mV, 455.4 nW @ ΔT= 20 °C	Yes
Bi _{1.8} Te _{3.2} Sb ₂ Te ₃		Glass fibers fabric	8 in-plane	42 mV, 2.3 μW @ ΔT= 20 °C	Yes
$\begin{array}{c} 40 \\ (Bi_{0.98}Sb_{0.02})_2 \\ (Te_{0.9}Se_{0.1})_3 \\ (Bi_{0.25}Sb_{0.75})_2 \\ (Te_{0.95}Se_{0.05})_3 \\ 41 \end{array}$	Dispenser Printing	Polyester fabric	12 through- plane	23.9 mV, 3.11 nW @ ΔT = 22.5 °C	Yes
	Screen Printing	PDIVI2	12	4./δ IIIVV/CIII @ ΔI= 25 °C	res

Bi _{0.3} Sb _{1.7} Te ₃			through-		
BI ₂ Se _{0.3} I e _{2.7}			plane		
⁴² Bi ₂ Te _{2.7} Se _{0.3} Bi _{0.5} Sb _{1.5} Te ₃	Brush-painting	Alumina	4 in-plane	ΔT= 3.7 °C @ 0.3 A cooling performance	No
⁴³ Bi _{1.8} Te _{3.2} Sb ₂ Te ₃	Screen Printing	Polyimide	8 in-plane	32 mV, 444nW @ ΔT= 20 °C	Yes
⁴⁴ TiS ₂ /organic PEDOT:PSS	Contact Printing	PET	5 in-plane	33 mV, 2.5 W/m² @ ΔT= 70 °C	Yes
45 Bi ₂ Te ₃ NWs Te- PEDOT:PSS	Vacuum Filtration	Free-standing TE foil	6 in-plane	56 mV, 32 μW/cm ² @ ΔT= 60 °C	No
⁶ Sn- Bi-doped Cu₃SbSe₄	Filling	Cu rings	N/A	20 mV, 1 mW @ ΔT= 160 °C	No

3. Electron microscopy micrographs of solution-processed nanoparticle building blocks

Figure S2. Selection of solution-processed nanoparticles produced by the authors of this review following reported synthesis procedures: $Ag_2Se_4^{6} Ag_2Te_4^{6} PbTe_4^{12} PbTe@PbS_4^{12} PbSe_4^{12}$ SnTe,⁴⁷ Cu_xSe,⁴⁸ CuTe,⁴⁹ Cu₃SbSe₄,⁶ Cu₂ZnSnSe₄,⁵⁰ BiSb,⁵¹ SnSb,⁵¹ Bi₂Te₃,² Sb₂Te₃,² Bi₂S₃.⁵²

4. References

1. C. Zhang, M. de la Mata, Z. Li, F. J. Belarre, J. Arbiol, K. A. Khor, D. Poletti, B. Zhu, Q. Yan and Q. Xiong, *Nano Energy*, 2016, **30**, 630-638.

2. R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc and G. Ramanath, *Nat. Mater.*, 2012, **11**, 233-240.

3. J. Xu, H. Li, B. Du, X. Tang, Q. Zhang and C. Uher, J. Mater. Chem., 2010, **20**, 6138-6143.

4. B. Xu, M. T. Agne, T. Feng, T. C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J.-H. Bahk, M. G. Kanatzidis, G. J. Snyder and Y. Wu, *Adv. Mater.*, 2017, **29**, 1605140.

5. C. Xiao, J. Xu, B. Cao, K. Li, M. Kong and Y. Xie, J. Am. Chem. Soc., 2012, 134, 7971-7977.

6. Y. Liu, G. Garcia, S. Ortega, D. Cadavid, P. Palacios, J. Lu, M. Ibanez, L. Xi, J. De Roo, A. M. Lopez, S. Marti-Sanchez, I. Cabezas, M. d. I. Mata, Z. Luo, C. Dun, O. Dobrozhan, D. L. Carroll, W. Zhang, J. Martins, M. V. Kovalenko, J. Arbiol, G. Noriega, J. Song, P. Wahnon and A. Y. Cabot, *J. Mater. Chem. A*, 2017, **5**, 2592-2602.

7. Y. Liu, D. Cadavid, M. Ibáñez, J. De Roo, S. Ortega, O. Dobrozhan, M. V. Kovalenko and A. Cabot, *J. Mater. Chem. C*, 2016, **4**, 4756-4762.

8. K. Park, K. Ahn, J. Cha, S. Lee, S. I. Chae, S.-P. Cho, S. Ryee, J. Im, J. Lee and S.-D. Park, M. J. Han, I. Chung and T. Hyeon, *J. Am. Chem. Soc.*, 2016, **138**, 14458-14468.

9. B. Xu, T. Feng, M. T. Agne, L. Zhou, X. Ruan, G. J. Snyder and Y. Wu, *Angew. Chem.*, 2017, **129**, 3600-3605.

10. C. Zhou, Z. Shi, B. Ge, K. Wang, D. Zhang, G. Liu and G. Qiao, *J. Mater. Chem. A*, 2017, **5**, 2876-2884.

11. H. Fang, T. Feng, H. Yang, X. Ruan and Y. Wu, *Nano Lett.*, 2013, **13**, 2058-2063.

12. M. Ibáñez, R. Zamani, S. Gorsse, J. Fan, S. Ortega, D. Cadavid, J. R. Morante, J. Arbiol and A. Cabot, *ACS Nano*, 2013, **7**, 2573-2586.

13. M. Ibáñez, Z. Luo, A. Genç, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhan, Y. Liu, M. Nachtegaal, M. Zebarjadi, J. Arbiol, M. V. Kovalenko and A. Cabot, *Nat. Commun.*, 2016, **7**, 10766.

14. A. Chen, D. Madan, P. Wright and J. Evans, J. Micromech. Microeng., 2011, 21, 104006.

15. H.-B. Lee, H. J. Yang, J. H. We, K. Kim, K. C. Choi and B. J. Cho, *J. Electron. Mater.*, 2011, **40**, 615-619.

16. D. Liang, H. Yang, S. W. Finefrock and Y. Wu, *Nano Lett.*, 2012, **12**, 2140-2145.

17. S. Jo, M. K. Kim, M. S. Kim and Y. J. Kim, *Electron. Lett.*, 2012, 48, 1013-1015.

18. D. Madan, Z. Wang, A. Chen, P. K. Wright and J. W. Evans, *ACS Appl. Mater. Interfaces.*, 2013, **5**, 11872-11876.

19. Z. Lu, M. Layani, X. Zhao, L. P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi and H. H. Hng, *Small*, 2014, **10**, 3551-3554.

20. S. J. Kim, J. H. We and B. J. Cho, *Energy Environ. Sci.*, 2014, **7**, 1959-1965.

21. H. Fang, Z. Luo, H. Yang and Y. Wu, *Nano Lett.*, 2014, **14**, 1153-1157.

22. Z. Cao, E. Koukharenko, R. N. Torah, J. Tudor and S. P. Beeby, *J. Phys.: Conf. Ser.*, 2014, **557**, 012016.

23. D. Madan, Z. Wang, A. Chen, R. Winslow, P. K. Wright and J. W. Evans, *Appl. Phys. Lett.*, 2014, **104**, 013902.

24. J. H. We, S. J. Kim and B. J. Cho, *Energy*, 2014, **73**, 506-512.

25. C. Dun, C. A. Hewitt, H. Huang, J. Xu, D. S. Montgomery, W. Nie, Q. Jiang and D. L. Carroll, *ACS Appl. Mater. Interfaces*, 2015, **7**, 7054-7059.

26. S. W. Finefrock, X. Zhu, Y. Sun and Y. Wu, *Nanoscale*, 2015, **7**, 5598-5602.

27. D. Madan, Z. Wang, P. K. Wright and J. W. Evans, *Appl. Energy*, 2015, **156**, 587-592.

28. C. Zhou, C. Dun, Q. Wang, K. Wang, Z. Shi, D. L. Carroll, G. Liu and G. Qiao, *ACS Appl. Mater. Interfaces*, 2015, **7**, 21015-21020.

29. J. Y. Oh, J. H. Lee, S. W. Han, S. S. Chae, E. J. Bae, Y. H. Kang, W. J. Choi, S. Y. Cho, J.-O. Lee, H. K. Baik and T. I. Lee, *Energy Environ. Sci.*, 2016, **9**, 1696-1705.

30. Z. Cao, J. J. Shi, R. N. Torah, M. J. Tudor and S. P. Beeby, *J. Phys.: Conf. Ser.*, 2015, **660**, 012096.

31. R. Rudež, P. Markowski, M. Presečnik, M. Košir, A. Dziedzic and S. Bernik, *Ceram. Int.*, 2015, **41**, 13201-13209.

32. M. He, Y. Zhao, B. Wang, Q. Xi, J. Zhou and Z. Liang, *Small*, 2015, **11**, 5889-5894.

33. T. Varghese, C. Hollar, J. Richardson, N. Kempf, C. Han, P. Gamarachchi, D. Estrada, R. J. Mehta and Y. Zhang, *Sci. Rep.*, 2016, **6**, 33135.

34. C. Wan, R. Tian, A. B. Azizi, Y. Huang, Q. Wei, R. Sasai, S. Wasusate, T. Ishida and K. Koumoto, *Nano Energy*, 2016, **30**, 840-845.

35. C. Sun, A. H. Goharpey, A. Rai, T. Zhang and D.-K. Ko, *ACS Appl. Mater. Interfaces*, 2016, **8**, 22182-22189.

36. Z. Lu, H. Zhang, C. Mao and C. M. Li, *Appl. Energy*, 2016, **164**, 57-63.

37. S. H. Park, S. Jo, B. Kwon, F. Kim, H. W. Ban, J. E. Lee, D. H. Gu, S. H. Lee, Y. Hwang, J.-S. Kim, D.-B. Hyun, S. Lee, K. J. Choi, W. Jo and J. S. Son, *Nat. Commun.*, 2016, **7**, 13403.

38. K. Ankireddy, A. K. Menon, B. lezzi, S. K. Yee, M. D. Losego and J. S. Jur, *J. Electron. Mater.*, 2016, **45**, 5561-5569.

39. Z. Cao, M. J. Tudor, R. N. Torah and S. P. Beeby, *IEEE Trans. Electron Dev.*, 2016, **63**, 4024-4030.

40. A. R. M. Siddique, R. Rabari, S. Mahmud and B. Van Heyst, *Energy*, 2016, **115**, 1081-1091.

41. S. J. Kim, H. E. Lee, H. Choi, Y. Kim, J. H. We, J. S. Shin, K. J. Lee and B. J. Cho, *ACS Nano*, 2016, **10**, 10851-10857.

42. H. Wu, X. Liu, P. Wei, H.-Y. Zhou, X. Mu, D.-Q. He, W.-T. Zhu, X.-L. Nie, W.-Y. Zhao and Q.-J. Zhang, *J. Electron. Mater.*, 2016, doi:10.1007/s11664-016-5076-2.

43. Z. Cao, E. Koukharenko, M. J. Tudor, R. N. Torah and S. P. Beeby, *Sens. Actuator A-Phys.*, 2016, **238**, 196-206.

44. R. Tian, C. Wan, Y. Wang, Q. Wei, T. Ishida, A. Yamamoto, A. Tsuruta, W. Shin, S. Li and K. Koumoto, *J. Mater. Chem. A*, 2017, **5**, 564-570.

45. C. Li, F. Jiang, C. Liu, W. Wang, X. Li, T. Wang and J. Xu, *Chem. Eng. J.*, 2017, doi:10.1016/j.cej.2017.03.023.

46. D. Cadavid, M. Ibáñez, A. Shavel, O. J. Dura, M. A. Lopez de la Torre and A. Cabot, *J. Mater. Chem. A*, 2013, **1**, 4864-4870.

47. M. Ibáñez, A. Cabot et al., *unpublished results*.

48. W. Li, R. Zamani, M. Ibáñez, D. Cadavid, A. Shavel, J. R. Morante, J. Arbiol and A. Cabot, *J. Am. Chem. Soc.*, 2013, **135**, 4664-4667.

49. W. Li, R. Zamani, P. Rivera Gil, B. Pelaz, M. Ibáñez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol and A. Cabot, *J. Am. Chem. Soc.*, 2013, **135**, 7098-7101.

50. M. Ibáñez, R. Zamani, W. Li, A. Shavel, J. Arbiol, J. R. Morante and A. Cabot, *Cryst. Growth Des.*, 2012, **12**, 1085-1090.

51. M. He, L. Protesescu, R. Caputo, F. Krumeich and M. V. Kovalenko, *Chem. Mater.*, 2015, **27**, 635-647.

52. M. Ibáñez, P. Guardia, A. Shavel, D. Cadavid, J. Arbiol, J. R. Morante and A. Cabot, *J. Phys. Chem. C*, 2011, **115**, 7947-7955.