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I. SELF-CONSISTENT RELATION FOR THE OPTICAL ELECTRIC FIELD IN THE PRESENCE
OF A PARTICLE

We consider a homogeneous metal particle of local isotropic permittivity εm(ω) placed in a uniform host
medium of permittivity εh(ω) and exposed to an external electric field Eext(r, ω), where ω is the frequency
of light. For monochromatic light, the full time-dependent electric field is given by 2Re{E(r, ω)e−iωt}, and
similarly for other quantities. A current jind(r, ω) is induced in the particle, which permits writing the total
electric field as1

E(r, ω) = Eext(r, ω) +
i

ωεh

(
k2hI3 +∇⊗∇

)
·
ˆ
d3r′

eikh|r−r′|

|r− r′|
jind(r′, ω), (S1)

where kh =
√
εh ω/c is the light wave vector in the host medium, c is the speed of light in vacuum, and I3

is the 3 × 3 unit matrix. Equation (S1) allows us to obtain a self-consistent relation for the electric field by
expressing the induced current jind(r, ω) = f(r)σ(ω)E(r, ω) in terms of the effective metal conductivity

σ(ω) = −iω [εm(ω)− εh(ω)] /4π

and a filling function f(r) that is 1 for r inside the metal and takes a vanishing positive value outside of it.
Inserting these expressions into eqn (S1), we obtain

E(r, ω) = Eext(r, ω) +
1

µ(ω)

(
k2hI3 +∇⊗∇

)
·
ˆ
d3r′ f(r′)

eikh|r−r′|

|r− r′|
E(r′, ω), (S2)

where

µ(ω) =
4π

εm/εh − 1
.

Now, multiplying both sides of eqn (S2) by
√
f(r) and defining

~E(r, ω) =
√
f(r)E(r, ω),

we find

~E(r, ω) = ~Eext(r, ω) +
1

µ(ω)

ˆ
d3r′M(r, r′) · ~E(r′, ω), (S3)

where

M(r, r′) =
√
f(r)f(r′)

(
k2hI3 +∇⊗∇

) eikh|r−r′|

|r− r′|
(S4)

is a linear symmetric operator.

II. ELECTROSTATIC LIMIT

In the c→∞ limit, eqn (S4) becomes

M(0)(r, r′) =
√
f(r)f(r′) ∇⊗∇ 1

|r− r′|
,
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where M(0) is a real symmetric operator that consequently admits an orthogonal set of real eigenmodes ~Ej =√
f Ej and eigenvalues µj satisfying

~Ej(r) =
1

µj

ˆ
d3r′M(0)(r, r′) · ~Ej(r′), (S5)

ˆ
d3r ~Ej(r) · ~Ej′(r) = L3δjj′ , (S6)∑

j

~Ej(r)⊗ ~Ej(r′) = L3δ(r− r′)I3. (S7)

The last expression (completeness relation) must be understood in the subspace of electrostatic fields (i.e.,
irrotational and divergenceless vector distributions). Here, we introduce a characteristic length of the particle
L (e.g., the length for a rod) that renders the mode fields and eigenvalues dimensionless. These relations allow
us to expand the solution of eqn (S3) in terms of electrostatic eigenmodes as

E(r, ω) =
∑
j

Cext
j (ω)

1− µj/µ(ω)
Ej(r)

=
∑
j

[
1− εm/εh − 1

εj − 1

]−1
Cext

j (ω)Ej(r) (S8)

with expansion coefficients

Cext
j (ω) =

1

L3

ˆ
d3r f(r)Ej(r) ·Eext(r, ω).

In eqn (S8) we define the mode permittivity εj through the relation µj = 4π(εj − 1)−1.

III. PERTURBATIVE SOLUTION INCLUDING RETARDATION

A direct extension of eqns (S5)-(S8) permits us to express the general solution of Maxwell’s equations in

terms of kh-dependent complex eigenmodes ~̃Ej =
√
f Ẽj and eigenvalues µ̃j of the symmetric operator M,

which satisfy

~̃Ej(r) =
1

µ̃j

ˆ
d3r′M(r, r′) · ~̃Ej(r′), (S9)

ˆ
d3r ~̃Ej(r) · ~̃Ej′(r) = L3δjj′ ,∑

j

~̃Ej(r)⊗ ~̃Ej(r′) = L3δ(r− r′)I3, (S10)

where the last expression (completeness) is valid in the subspace of divergenceless vector fields (i.e., solutions
satisfying the Coulomb law ∇ ·E inside the particle). The solution for the field now becomes

E(r, ω) =
∑
j

C̃ext
j (ω)

1− (εm/εh − 1)µ̃j/4π
Ẽj(r), (S11)

where

C̃ext
j (ω) =

1

L3

ˆ
d3r f(r) Ẽj(r) ·Eext(r, ω). (S12)

We intend to express the retarded eigenmodes and eigenvalues in terms of the electrostatic modes. For this
purpose we take s = khL/2π =

√
εhL/λ as a size parameter and write the perturbation expansion

M(r, r′) =M(0)(r, r′) +

∞∑
n=2

M(n)(r, r′),

where we find the n = 1 term to be zero, while the n ≥ 2 terms are given by

M(n)(r, r′) =
i2πsn

Ln

√
f(r)f(r′)

|r− r′|n−5

n(n− 2)!

[
(n− 3)(r− r′)⊗ (r− r′) + (1− n)|r− r′|2I3

]
.
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Using the expansion µ̃j = µ̃
(0)
j + µ̃

(1)
j + µ̃

(2)
j + µ̃

(3)
j + · · · for the eigenvalues and a similar one for the eigenmodes,

where each term µ̃
(n)
j is proportional to sn, eqn (S9) leads to[

µ̃
(0)
j + µ̃

(1)
j + µ̃

(2)
j + µ̃

(3)
j + · · ·

] [
~̃E (0)
j (r) + ~̃E (1)

j (r) + ~̃E (2)
j (r) + ~̃E (3)

j (r) + · · ·
]

(S13)

=

ˆ
d3r′

[
M(0)(r, r′) +M(2)(r, r′) +M(3)(r, r′) + · · ·

]
·
[
~̃E(0)j (r′) + ~̃E (1)

j (r′) + ~̃E (2)
j (r′) + ~̃E (3)

j (r′) + · · ·
]
.

This expansion of retarded modes in terms of electrostatic ones involves a severe approximation: the electrostatic
modes have zero rotational, so they lead to a vanishing magnetic field B = (−ic/ω)∇× E. In essence, we are
neglecting magnetic modes, both in the their contribution to retardation corrections of the electrostatic modes
and in the fact that they emerge with nonzero strength for finite size compared with the light wavelength.
However, as we demonstrate through extensive numerical simulations, this is a good approximation for metallic
nanoparticles in the size range under consideration. Nonetheless, a reasonable estimate for the magnetic
field can be obtained from the electric one using the Maxwell equation ∇ ×H = (−iεω/c)E.2 Keeping these
considerations in mind, we proceed from eqn (S13) in a customary fashion by solving the equation

l=n∑
l=0

µ̃
(n−l)
j

~̃E (l)
j =

l=n∑
l=0

ˆ
d3r′M(n−l)(r, r′) · ~̃E (l)

j (r′) (S14)

for each perturbation order n, using the solutions for lower orders < n. The electrostatic modes satisfy eqn

(S14) for n = 0, so we assign µ̃
(0)
j = µj and ~̃E (0)

j = ~Ej . Also, the vanishing of M(1) leads to µ̃
(1)
j = 0 and

~̃E (1)
j = 0. After lengthy but straightforward algebra, we find the rest of the eigenvalues (n ≥ 2) to be

µ̃j = µj + 4πAj(s) = 4π
[
(εj − 1)−1 +Aj(s)

]
(S15)

with

Aj(s) =

∞∑
n=2

ajns
n (S16)

and

ajn =
(2πi)n

4πn(n− 2)!Ln+3

ˆ
d3r f(r)

ˆ
d3r′ f(r′) (S17)

×
{

(n− 3)|r− r′|n−5 [(r− r′) ·Ej(r)] [(r− r′) ·Ej(r
′)] + (1− n)|r− r′|n−3Ej(r) ·Ej(r

′)
}
.

In this expression, the retardation corrections of the eigenvalue j are entirely expressed in terms of the elec-
trostatic mode with the same index j. This result is rigorous up to order n = 3. For higher-order corrections,
this result holds if we neglect the interactions between different electrostatic modes (crossed terms), which we
find to be an excellent approximation for the particle sizes and morphologies considered in this paper, where
we only retain terms up to n = 4 in practice.

IV. LIGHT PLANE-WAVE SCATTERING

In the khr � 1 and r � r′ limit, eqn (S2) reduces to

E(r, ω) = Eext(r, ω) +
1

εh

[
k2hp + (p · ∇)∇

] eikhr

r
,

where

p =
εh
µ(ω)

ˆ
d3r′ f(r′)E(r′, ω)e−ikhr

′·r̂ (S18)

is a generalized kh-dependent induced dipole moment.
We consider an incident plane wave propagating along z and polarized along x, which is taken to be a

symmetry direction of the particle. Inserting the external field Eext = E0 eikhzx̂ into eqns (S11) and (S12), and
this in turn into eqn (S18), we find p = pxx̂ with

px =
εhE0

4πL3

∑
j

(´
d3r f(r) Ẽjx(r)eikhz

)(´
d3r f(r) Ẽjx(r)e−ikhz

)
1/(εm/εh − 1)− 1/(εj − 1)−Aj(s)

, (S19)
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FIG. S1: Size dependence of the mode volume. The dipole mode volume V
kh
1 (solid curves) is plotted as a function

of s = khL/2π, calculated from eqn (S20) for rods (left panel) and triangles (right panel) of different aspect ratio R (see
labels in the right plot). The results are normalized to the total volume of the particle V . Particle parameters L and R

are defined in Fig. 3 of the main paper. Dashed curves show the Taylor expansion of V
kh
1 up to terms of order R2.

where we consider far-field emission along z as well. The numerator in this expression receives retardation
corrections both from the mode fields Ẽjx and from the phase factors e±ikhz. As an indication that these
corrections are small for the particle sizes usually targeted through colloid synthesis, we analyze the effect of
the phase factors in Fig. S1 by computing

V kh
j =

1

L3

∣∣∣∣ˆ d3r f(r) eikhzEjx(r)

∣∣∣∣2 (S20)

(i.e., approximating Ẽjx by Ejx). We observe that the results have a minor dependence on the retardation
parameter s = khL/2π for small s. Retardation corrections are in fact proportional to s2 in this numerator. In
practice, we find that for the sizes and morphologies considered in this work, neglecting these corrections is an
excellent approximation, so we write the noted numerator as an electrostatic mode volume

Vj ≡ V 0
j =

1

L3

∣∣∣∣ˆ d3r f(r)Ejx(r)

∣∣∣∣2 . (S21)

This allows us to express the dipole px = αE0 in terms of the polarizability

α(ω) =
εh
4π

∑
j

Vj
1/(εm/εh − 1)− 1/(εj − 1)−Aj(s)

. (S22)

Importantly, in virtue of eqn (S7), the mode volumes satisfy the sum rule∑
j

Vj = V,

where V is the total volume of the particle. Actually, the numerator of eqn (S19), which includes retardation,
also satisfies this sum rule as a result of the closure relation (S10) for the retarded mode fields. Additionally, the
aj3 coefficient [see eqn (S17)] can be expressed in terms of the corresponding mode volume, so the correction
term in the denominator of eqn (S22) can be written from eqn (S16) as

Aj(s) = aj2s
2 +

4π2iVj
3L3

s3 + aj4s
4 + · · · (S23)

We finally note that the extinction and the angle-integrated elastic scattering cross-sections can be written in
terms of the polarizability as

σext =
4πω
√
εhc

Im {α(ω)}

and

σsca =
8πω4

3c4
|α(ω)|2 .
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Likewise, approximating the retarded mode fields by the nonretarded ones, we can express the self-consistent
near field as

E (r, ω) ≈
∑
j

Cext
j (ω)

1− (εm/εh − 1) [1/(εj − 1) +Aj ]
Ej(r). (S24)

The mode energies are then well captured by this expression, while the spatial profiles and strengths are
reasonably well approximated by the nonretarded modes for the particle sizes and shapes considered in this
work.

Finally, as we note that in the main paper and in the additional results presented below, the lowest-order
j = 1 dipole mode of each particle is modeled with four real parameters: ε1, V1, a12, and a14. We further
approximate the retarded mode field by the nonretarded field E1.

V. LOCAL DENSITY OF OPTICAL STATES (LDOS)

We calculate this quantity as a function of position r and frequency ω using the expression3

LDOSn̂ = Im{n̂ ·E(r, ω)}/(2π2ω),

where E(r, ω) is the electric field produced by a unit dipole n̂ placed at r and oscillating at frequency ω. The
real part of this field diverges, but the imaginary part takes a finite value, which in vacuum becomes

LDOS0
n̂ = ω2/3π2c3.

The direct field produced by the dipole in the homogeneous host medium at a position r′ is (1/εh)(k2h +∇ ⊗
∇)eikh|r−r′|/|r− r′| · n̂, which upon insertion into eqn (S12), using eqn (S9), allows us to write

C̃ext
j (ω) =

µ̃j

εhL3
Ẽj(r) · n̂.

Inserting this expression into eqn (S11), we find

LDOSn̂

LDOS0
n̂

=
6π
√
εh

k3hL
3

Im


∑
j

(
n̂ · Ẽj(r)

)2
4π/µ̃j − (εm/εh − 1)

 .

Assuming that one mode j = 1 dominates the sum, approximating Ẽ1 ≈ E1, and using eqns (S15) and (S23),
we finally obtain

LDOSn̂

LDOS0
n̂

≈
6π
√
εh

k3hL
3

(n̂ ·E1(r))
2

Im

{
1

[1/(ε1 − 1) +A1]−1 − (εm/εh − 1)

}
, (S25)

which is the expression used in the main text to calculate the analytical LDOS.

VI. PLASMON QUANTUM YIELD EXPRESSED AS THE RATIO OF POWERS FOR
DIFFERENT TRANSFER CHANNELS

In the main text we argue the the plasmon quantum yield, defined as the ratio of radiative plasmon decay
to total plasmon decay, can be calculated from the power associated with light-emission and metal-absorption
channels, P emi and P abs, respectively, as Y = P emi/(P emi + P abs), and that the resulting expression coincides
with the ratio between elastic-scattering and extinction cross-sections of the particle for light polarization along
the plasmon dipole. Here, we prove that this is indeed the case.

The power absorbed by the metal under the influence of a monochromatic source can be obtained from the
general expression

P abs =
ω

2π
Im{εm(ω)}

ˆ
drf(r)|E(r, ω)|2. (S26)

We now use eqn (S24) for the electric field and consider that the sum is dominated by a mode j = 1, so that the
rest of the terms can be neglected. The integral in eqn (S26) can be directly performed using the orthonormality
of the modes (eqn (S6)), which readily leads to the expression

P abs =
ε2hL

3ω

2π
Im

{
1

εh − εm

} ∣∣∣∣Cext
1

g1

∣∣∣∣2 , (S27)
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where g1 = (εm/εh − 1)−1 − (ε1 − 1)−1 −A1.
The emitted power can be obtained from the expression3

P emi =
4
√
εhk

3ω

3
|p|2, (S28)

where p is the dipole induced in the particle by the external source. Now, using eqn (S18) to obtain this dipole,
neglecting the contribution to retardation originating in the exponential phase factor inside the spatial integral
of that equation, and assuming again a dominant mode j = 1, we find

p =
εh
4π

Cext
1

g1

ˆ
drf(r)E1(r).

Inserting this expression into eqn (S28), and assimilating the square of the spatial integral to V1L
3 (see eqn

(S21)), we obtain

P emi =
εhL

3V1k
3
hω

12π2

∣∣∣∣Cext
1

g1

∣∣∣∣2 . (S29)

Finally, combining eqns (S27) and (S29), we find

Y =
P emi

P emi + P abs
=

[
1 +

3λ3

4π2
√
εhV1

Im

{
1

εh − εm

}]−1
, (S30)

which coincides with eqn (13) of the main text.

VII. RELATION BETWEEN QUANTUM YIELD, LDOS, AND FIELD ENHANCEMENT

We define the field enhancement (FE) for a given direction n̂ at a position r as the squared modulus of the
electric field component along that direction when the structure is illuminated by an optical external field also
oriented along n̂. Using eqns (S11) and (S12), assuming that the term j = 1 dominates the sum over modes,

approximating Ẽ1 ≈ E1, and identifying (Cext
1 )

2
= V1/L

3 according to eqn (S21) for a unit incident field, we
find

FEn̂ ≈
V1
L3

(n̂ ·E1(r))
2

|1− (εm/εh − 1)µ̃1/4π|2
. (S31)

Now, combining eqns (S25) and (S31) we find

FEn̂(
LDOSn̂/LDOS0

n̂

) ≈ 1
√
εh

[
1 + (6π/k3hV1)

∣∣(ε1 − 1)−1 +A1

∣∣2 Im{εm/εh − 1}
]−1

. (S32)

Noticing that for a frequency near the j = 1 resonance one has (εm/εh − 1)−1 ≈ (ε1 − 1)−1 + A1 (i.e., a pole
in eqn (S24)), we can approximate the right-hand side of eqn (S32) so that the expression inside the square
brackets becomes exactly the same as the one inside the square brackets of eqn (S30). We thus conclude the
approximate relation

Y ≈
√
εh

(FEn̂)(
LDOSn̂/LDOS0

n̂

) ,
which is numerically validated in Fig. 14 of the main paper. Incidentally, we note that the factor

√
εh enters

this expression explicitly because the LDOS in the homogeneous host is
√
εh × (LDOS0

n̂).

VIII. MODEL PARAMETERS FOR ADDITIONAL PARTICLE MORPHOLOGIES

In the main paper, we concentrate on three common particle morphologies (rods, triangles, and cube cages),
for which model parameters are provided in Fig. 3 and Table 1. We supplement those results with additional
parameters for other common morphologies: ellipsoids, bicones, disks, rings, and bipyramids. Figure S2 and
Table S1 show the four parameters that allow us to compute the polarizability for each of these new types of
particles near their respective lowest-order dipole plasmons as a function of aspect ratio R, which is defined in
the top insets of Fig. S2. These parameters are used in the analytical curves of Figs. 2, 8(C-F), 9(C-F), and
10(C-F) of the main paper. Additionally, we provide parameters for transversal modes (Table S2) used in the
analytical calculations of Fig. S3.
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FIG. S2: Model parameters for various additional particle morphologies. We show the resonant in-vacuum
permittivity ε1, the mode volume V1, and two of the expansion coefficients ajn in eqn (S23), as a function of aspect
ratio R, for the lowest-order dipole mode (j = 1) of five selected morphologies (see upper insets). Symbols: ε1 values
extracted by fitting the corresponding absorption spectra (computed in the electrostatic limit), V 0

1 values calculated
from eqn (S21), and a12 and a14 values obtained from eqn (S17). Solid curves: analytical fitting functions given in
Table S1. Symbol and curve colors correspond to the different shapes of the upper insets. The electrostatic mode field
E1 is used in the evaluation of eqns (S17) and (S21), as obtained from the electrostatic solution, after normalization
according to eqn (S6). Details of the geometries are as follows: ellipsoids are axially-symmetric and prolate; bicones
have smooth tips with rounding radius L/40R and smooth circular base edge with rounding radius L/100R; disks have
semicircular edge profiles; rings have circular sections; bipyramids have pentagonal cross-section and smooth tips with
rounding radius (1 + 2.1R)L/80; squared rods have sharp edges and smooth corners with rounding radius 0.3L; and
cylinders have smooth edges with rounding radius L/40R.

ε1 V1/V a12 a14 V/L3

ellipsoid −0.871− 1.35R1.54 0.994 5.52/(1− ε1) −9.75/R2.53 π/6R2

bicone −0.687− 2.54R1.5 0.648− 0.441/R0.687 1.34/(1− ε1) −1.04/(1− ε1) 0.262/R2

disk −0.479− 1.36R0.872 0.944 7.05/(1− ε1) −10.9/R0.98 fdisk
ring 1.39− 1.31R1.73 0.514 + 2.07/R2.67 7.24/(1− ε1) −19.1/(1− ε1) π2(R− 1)/4R3

bipyramid 1.43− 4.52R1.12 1.96− 1.73/R0.207 2.89/(1− ε1) −1.79/(1− ε1) 0.219/R2

squared rod −2.28− 1.47R1.49 0.904− 0.411/R2.26 −0.573 + 3.31/R0.747 0.213− 13.1/R1.97 1/R2

cylinder −1.59− 1.96R1.4 0.883− 0.149/R3.97 −1.05 + 3.02/R0.494 0.0796− 9.08/R2.08 π/4R2

tetrahedron −6.35 0.352 0.459 −0.416 1/6
√

2
octahedron −3.85 0.395 0.547 −0.918 1/6
decahedron −4.19 0.576 0.654 −1.05 ≈ 0.123

TABLE S1: Fitting functions for the parameters considered in Fig. S2. The rightmost column gives the particle
volume in units of L3, including tip and edge rounding. In the last three entries, L corresponds to the side length
of the tetrahedron, the corner-to-corner distance of the octahedron, and twice the radius of the pentagon base of the
decahedron, respectively (without inclusion of edge and corner rounding). The cube is included here as a square rod
with R = 1. The V/L3 fraction for the rounded disk is fdisk = π (4 + 3(R− 1)(2R+ π − 2))/24R3.
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ε1 V1/V a12 a14
mode 1 −1.75 + 3.19/R6.14 0.0679 + 1.83/R2.1 0.0148 + 3.69/R2.86 0.0142− 16.9/R3.58

mode 2 −0.978− 0.661/R1.1 0.891− 2.28/R2.53 −21.7 + 22.7/R0.0232 1.48− 3.67/R0.458

mode 3 −1.57 + 0.0446R −0.0346 + 0.0111R −0.0117 + 0.773/R1.46 −0.256 + 0.0554R0.758

TABLE S2: Fitted parameters for the first three transversal modes used in Fig. S3 for nanorods. Values for mode 3 are
only applicable to R ≥ 4.
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FIG. S3: Transversal modes in nanowires. Same as Fig. 5 of the main paper, but for incident light polarized along
the transversal rod direction (see inset to (A)). The parameters used for the analytical model are given in Table S2.

IX. DESCRIPTION OF TRANSVERSAL MODES

We show in Fig. S3 the ability of our analytical approach to describe transversal plasmons in nanorods.
For this polarization, several modes are piled up in a narrow spectral range, so we have to include the three
lowest-order modes in order to achieve the good agreement shown in the figure between analytical theory and
BEM numerical simulations.

X. EXTINCTION VS ABSORPTION

We compare in Fig. S4 extinction and absorption spectra for gold nanorods with different sizes and aspect
ratios. The analytical model agrees well with BEM numerical simulations for both the wavelength positions of
extinction and absorption maxima (Fig. S4(A)) and the spectral shape (Fig. S4(B)).

XI. OVERVIEW COMPARISON OF EXPERIMENTAL PLASMON WIDTHS

The spectral widths of experimentally observed plasmon bands are usually broadened by several undesired
effects related to sample preparation and particle quality. For example, a finite distribution in particle size and
shape in colloidal suspensions implies that the measured spectra are averaged over a large number of particles
in the sample, which present variations in details such as aspect ratio, edge and corner rounding, metal volume,
and other aspects of their morphology. Also, the quality of the metal (e.g., the presence of defects and grain
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In all cases, analytical results (solid curves) agree well with numerical simulations (broken curves).

0 100 200 300
L (nm)

0

5

10

15

20

25

Q

A

2 4 6 8
R

0

5

10

15

20

25

Q

B

Theory
Experiment

Q
ua

lit
y 

fa
ct

or
, Q

Q
ua

lit
y 

fa
ct

or
, Q

Ag rod, ref. 4
Au rod, ref. 5
Au rod, ref. 6

Au bipyramid, ref. 7
Au disk, ref. 8

Au triangle, ref. 9

FIG. S5: Analytical model versus experiment: plasmon quality factor. We plot the quality factor of the lowest-
order dipolar plasmons in different types of gold particles as a function of size length L (A) and aspect ratio R (B), taken
from different experimental sources (symbols for rods,4–6 bipyramids,7 disks,8 and triangles9) and compared with the
predictions from the analytical model (solid curves). (Reference numbers correspond to the list in this ESI document.)
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boundaries) is an important factor that affects the response in lithographically carved particles. These effects are
not captured by the idealized model of the particles used in theoretical calculations. Therefore, the simulated
plasmon widths are typically smaller than those observed experimentally. In this respect, electromagnetic
simulations can be understood to provide an ideal lower bound for spectral broadening, which is only reached
when identical, defect-free particles are considered.

We present in Fig. S5 the plasmon quality factor Q obtained from available experimental spectra for gold
nanoparticles4–9 (symbols), compared with our analytical model (solid curves). The figure is complementary
to Fig. 11 of the main paper, where we show a comparison of plasmon wavelengths for the same particles.
As anticipated, the measured Q’s are lower than the corresponding calculated values, although the decreasing
trends with increasing R are similar in both of them. In some cases, such as disks and bipyramids of large length
and aspect ratio, the agreement between experiment and theory is rather good, indicating that the measured
samples have a comparatively small dispersion in size and shape.
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