Supplementary Information

Ag Nanoparticles / Hematite Mesocrystals Superstructure Composite: a Facile

Synthesis and Enhanced Heterogeneous Photo-Fenton Activity

Xianjie Chen,^a Fangge Chen,^a Fenglin Liu,^a Xiaodong Yan,^b Wei Hu,^a Ganbing Zhang,^a Lihong Tian,^{*ab} Qinghua Xia^a

and Xiaobo Chen*b

^a Hubei Collaborative Innovation Center for Advanced Organochemical Materials; Ministry-of-Education Key

Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062,

P. R. China.

^b Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA

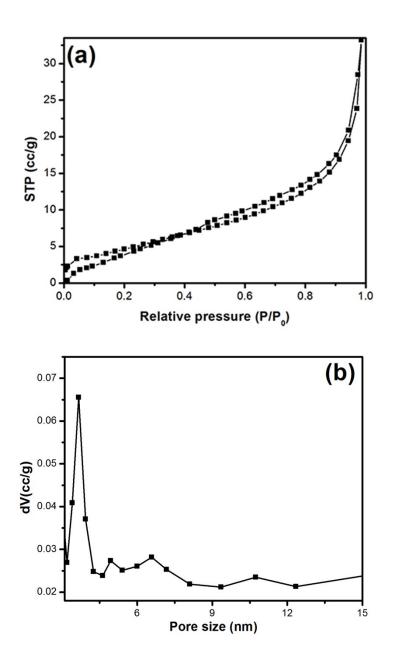


Fig. S1. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of Fe₂O₃ MCs

Table S1. A comparison of BET surface areas and average pore distribution of Fe_2O_3 MCs and Ag / Fe_2O_3 MCs composites.

Samples	Fe ₂ O ₃ MCs	Ag/ Fe ₂ O ₃ MCs-1%	Ag/ Fe ₂ O ₃ MCs-2%	Ag/ Fe ₂ O ₃ MCs-3%
BET surface area (m ² /g)	18.8	14.0	17.9	9.77
Average pore size (nm)	3.69	3.72	3.65	3.68

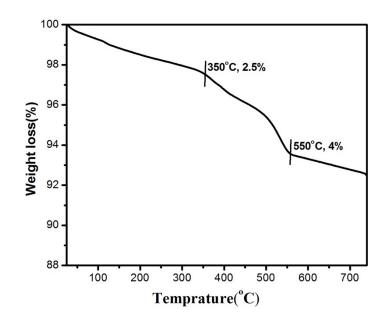


Fig. S2. TG-DTA curve of as-prepared Fe₂O₃ MCs.

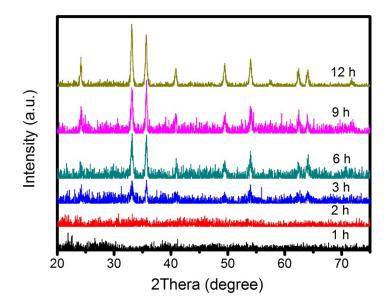


Fig. S3 Time-dependent XRD patterns of hematite mesocrystals during the solvothermal process

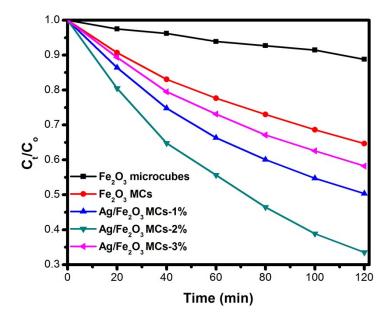
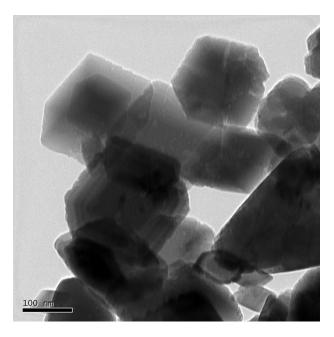



Fig. S4. Photocatalytic degradation of MO with the presence of H₂O₂ by different photocatalysts under visible light

irradiation.

Fig. S5. TEM image of Fe_2O_3 nanocubes

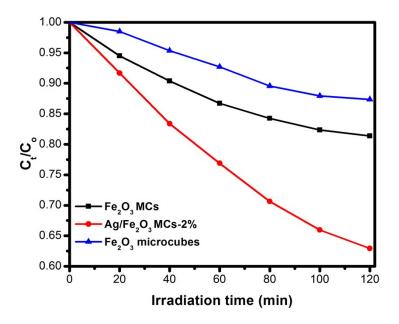
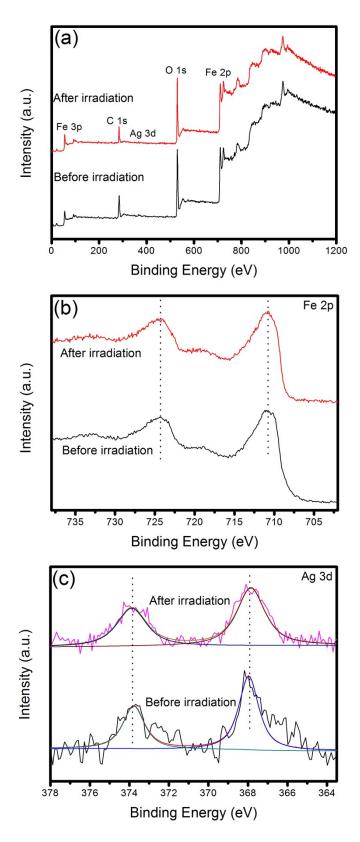



Fig. S6. The photocatalytic degradation of RhB over Fe_2O_3 MCs, Ag/Fe₂O₃ MCs-2% and Fe₂O₃ microcubes without the addition of H_2O_2 under visible light.

Fig. S7. The XPS spectrum of Ag/Fe₂O₃ MCs-2% before and after irradiation for 2 h, the whole spectra (a), Fe 2p (b), Ag 3d (c).

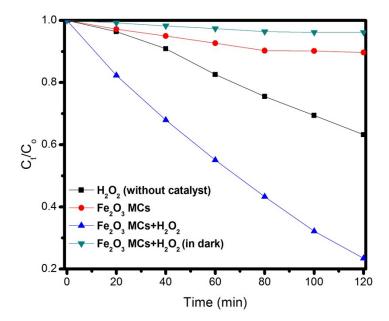


Fig. S8. Photocatalytic mechanism experiments of the degradation of RhB under visible light irradiation.