Supplementary Information

New insights into the effect of sodium on Fe₃O₄-based nanocatalysts for CO₂ hydrogenation to light olefins

Jian Wei,^{ab} Jian Sun,^a Zhiyong Wen,^a Chuanyan Fang,^a Qingjie Ge,^{*a} and Hengyong

Xu*a

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, PR China

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

* Corresponding author.

E-mail addresses: geqj@dicp.ac.cn (Q. Ge), xuhy@dicp.ac.cn (H. Xu).

Catalyst Preparation

The sodium-free Fe₃O₄ nanocatalyst was synthesized by a one-pot synthesis method. In a typical synthesis, 31.62 g of FeCl₃·6H₂O and 12.54 g of FeCl₂·4H₂O were dissolved in 150 ml deionized water containing 5.1 ml of 12.1 mol/l HCl. Next, 5 wt.% of NH₃·H₂O was added dropwise into the above solution under stirring at 60 °C until the pH of the final solution was maintained at ~9. After continuously stirring for 1 h, the black-brown product was separated by a magnet, washed completely with deionized water, dried overnight at 60 °C and hereafter denoted as Fe₃O₄. The sodium promoter was added in a calculated amount to the Fe₃O₄ precursor by impregnation with aqueous solution of NaNO₃ to give the desired Na/Fe weight ratios of 1.2/100. This catalyst is denoted as Na/Fe₃O₄.

Finally, the catalyst samples were calcined in air at 400 °C for 3 h, pressed into pellets (30 MPa), crushed and sieved to 20-40 meshes for characterization and activity test.

Catalyst	CO ₂ conv.	CO sel.	Hydrocarbon distribution (wt.%)				O/B h	Yield (%)	
	(%)	(%)	CH ₄	C ₂ =-C ₄ =	C20-C40	C_{5^+}	- U/r ·	$C_2^{=}-C_4^{=}$	C ₅₊
Fe ₃ O ₄	29.3	16.6	60.3	0.1	36.4	3.1	0.0	0.0	1.2
Na/Fe ₃ O ₄	39.5	14.8	15.7	45.8	8.1	30.3	5.6	14.8	9.8
FeNa(1.18)	40.5	13.5	15.8	46.6	7.5	30.1	6.2	15.7	10.1

Table S1 Reaction performance of Fe_3O_4 -based catalysts for CO_2 hydrogenation. ^a

^a Reaction conditions: $H_2/CO_2 = 3.0$, 320 °C, 3.0 MPa, 2000 ml/(h·g_{cat}), TOS = 60 h. ^b The ratio of olefin to paraffin in the C₂-C₄ range hydrocarbons.

Fig. S1 CO₂ conversion and C₂⁼-C₄⁼ selectivity of Fe₃O₄-based catalysts as a function of time on stream. Reaction conditions: $H_2/CO_2 = 3.0$, 320 °C, 3.0 MPa, 2000 ml/(h·g_{cat}).

Fig. S2 CO and hydrocarbon selectivity for Fe_3O_4 -based catalysts. Reaction conditions: $H_2/CO_2 = 3.0, 320$ °C, 3.0 MPa, 2000 ml/(h·g_{cat}), TOS = 60 h.