Supplementary Materials

Towards Rational Design of Core-Shell Catalytic Nanoreactor with high Performance Catalytic Hydrogenation of Levulinic acid

Biplab Banerjee,^{b§} Ramana Singuru,^{a§} Sudipta K Kundu,^b Karnekanti Dhanalaxmi,^a Linyi Bai,^c Yanli Zhao,^c Benjaram Mahipal Reddy,^a Asim Bhaumik^{b*} and John Mondal^{a*}

^aInorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India. E-mail: <u>johncuchem@gmail.com</u>; <u>johnmondal@iict.res.in</u>

^bDepartment of Material Science, Indian Association for the Cultivation of Science, Kolkata-700032, India. E-mail: <u>msab@iacs.res.in</u> ^cDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

[§]These two authors have equally contributed in this work

Characterization Techniques:

Powder X-ray diffraction (PXRD) patterns of different samples were recorded with a Bruker D8 Advance X-ray diffractometer operated at a voltage of 40 kV and a current of 40 mA using Ni-filtered Cu K α (λ =0.15406 nm) radiation. Ultra High Resolution Transmission electron microscopy (UHR-TEM) images were recorded in a JEOL JEM 2010 transmission electron microscope with operating voltage 200 kV equipped with a FEG. Field emission scanning electron microscopic images of samples were obtained using a JEOL JEM 6700 field emission scanning electron microscope (FE-SEM). Nitrogen sorption isotherms were obtained using a Quantachrome Autosorb 1C surface area analyzer at 77 K. Prior to the measurement, the samples were degassed at 423 K for approximately 4 h in high vacuum. Solid-state CP-MAS NMR studies were performed using a Bruker Avance III HD 400 MHz NMR spectrometer. X-ray photoelectron spectroscopy (XPS) was performed on an Omicron nanotech operated at 15 kV and 20 mA with a monochromatic Al Ka X-ray source. Chemical analysis was performed by using Optima 2100 DV (Perkin-Elmer) inductively coupled plasma atomic emission spectroscopy (ICP-AES). Pd surface area of Pd@SiO₂ and m-SiO₂@Pd@SiO₂ was quantified employing CO(g) chemisorption (Micromeritics ASAP 2020C). The samples were heated in $H_2(g)$ at 350 °C for 2 h before performing CO chemisorption analysis at 35 °C. Based on the measured chemisorption, the Pd particle size was calculated.

Fig. S1. Small angle powder XRD pattern of (panel a) & wide angle powder XRD pattern of (panel b)

Figure S2. TEM images of SiO_2 nanospheres of different magnification

Figure S3. FT-IR images of all silica samples at different steps

Figure S4. TG-DTA profile of Pd@SiO₂

Figure S5. TG-DTA profile of m-SiO₂@Pd@SiO₂

Figure S6. Energy dispersive X-ray spectrum profile of Pd@SiO₂

Figure S7. Energy dispersive X-ray spectrum profile of m-SiO₂@Pd@SiO₂

Catalyst	Particle size from CO chemisorption [nm]	Particle size from TEM [nm]
$m-SiO_2@Pd@SiO_2$	7.2	5.4
$Pd@SiO_2$	5.9	6.2

Table S1: Pd nanoparticle size derived from CO Chemisorption and TEM measurements

Figure S8. XPS spectrum of Pd-3d region for Pd@C catalyst.

Figure S9. Mechanism for LA hydrogenation .