Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Shape dependence of nanoceria on completely catalytic

oxidation of o-xylene

Lian Wang^a, Yafei Wang^a, Yan Zhang^a, Yunbo Yu^{a,b}, Hong He^{a,b}, Xiubo Qin^c, Baoyi

Wang^c

^aState Key Joint Laboratory of Environment Simulation and Pollution Control,

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

Beijing 100085, China

^bCAS Center for Excellence in Urban Atmospheric Environment, Chinese Academy

of Sciences, Xiamen 361021, China

^cKey Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics,

Chinese Academy of Sciences, Beijing 100049, China

Experimental Details for EPR measurement

Electron spin resonance (EPR) spectra in the X-band were recorded at -196 °C with a CW spectrometer JES-FA200 (JEOL) at a microwave power of 1 Mw, a modulation frequency of 100 kHz, and central field of 325 mT. Before the measurement, the samples (100 mg) were pretreated in a flow of N₂ (30 ml/min) at 300 °C for 120 min and cooled down to room temperature. After degassed in vacuo at 100 °C for 15 min, the samples were exposed to pure O₂ for 10 min at room temperature (10 ml/min) and then cooled down to -196 °C. After this adsorption, the samples were purged with N₂ for 10 min at room temperature (10 ml/min) in order to eliminate excess O₂ molecules not chemisorbed and remaining in the cell, which would cause dipolar broadening on the EPR signals of the generated surface species.

Catalyst	$C_{o-xylene}$ (ppm)	WHSV (ml·h ⁻¹ ·g ⁻¹)	<i>T</i> ₅₀ (°C)	<i>T</i> ₉₀ (°C)	Reference
1% Pd/AC	1,500	30,000	175	188	1
$1\% Pd/\gamma$ - Al_2O_3	1,000	30,000	170	190	2
1%Pd/Co ₃ O ₄ (3D)	150	60,000	193	204	3
0.2% Pd/HFAU	1,700	39,000	225	235	4
1% Pt/C	1,000	36,000	200 ^a 155 ^b	210 ^a 177 ^b	5
5% Cu/ γ -Al ₂ O ₃	800	7,200	290	330	6
NaX zeolite	210	3,2000	250	c	7
CeO ₂ nanorods	250	60,000	195	239	This study

Table S1 Catalytic oxidation of o-xylene over different catalysts

^a first run;

^b second run;

^c o-xylene conversion lower than 90% in whole temperature range.

sample	BET (m²/g)	Average size (nm) ^a	Size (nm) ^b	Exposed planes
particles	75.0	12.8	8-13	(111) + (100)
cubes	76.9	13.4	8-20	(100)
rods	88.2	11.6	40-300 (length) 8-13 (diameter)	(111) + (100)

Table S2 Physicochemical properties of CeO₂ nanomaterials.

^a Calculated using the Scherrer equation over the peak due to (111) plane;

^b Estimated by TEM images.

Table S3 XPS binding energies of individual peaks of the Ce 3d spectra for CeO_2 nanomaterials with different shapes.

1			Ce	e ⁴⁺				Ce	2 ³⁺		[Ce ³⁺]
sample	v	ν"	ν"	u	u"	u""	ν_0	ν'	u ₀	u'	- (%)
particles	882.1	888.3	897.7	900.8	907.1	916.2	879.8	884.8	898.9	902.7	24.4
cubes	881.6	887.8	897.4	900.3	906.6	915.7	879.7	884.6	898.3	902.9	21.1
rods	881.4	887.8	897.1	900.2	906.4	915.6	879.5	884.4	898.0	902.6	23.5

The Ce^{3+} concentration in CeO_2 nanomaterials was calculated by analysis of the integrated peak area, with the equation shown as following:

where A_i is the integrated area of peak "i".

Table S4 Integrated peak areas due to the desorption of different oxygen species during O₂-PTD experiment

Sample	Chemisorbed O ₂		Surface atomic oxygen		
	Peak max (°C)	Intensity (a.u.)	Peak max (°C)	Intensity (a.u.)	
particles	166	58.8	458	301.6	
cubes	148	14.3			
rods	134	88.9	488	37.1	

Sample	Lattice strain (%) ^a					
	(111)	(200)	(400)			
particles	1.0	0.8	0.5			
cubes	0.3	0.8	0.3			
rods	1.0	1.1	0.5			

Table S5 Lattice strain of different crystal facets of nanoceria.

^a Estimated by the single-line method from analysis of XRD line broadening using a pseudo-Voigt profile function.^{8,9}

Fig. S1 XRD patterns of the CeO_2 nanomaterials with different shapes.

Fig. S2 Raman shift of the CeO₂ nanomaterials with different shapes.

Fig. S3 PAS spectra of CeO₂ with different shapes.

Fig. S4 EPR profiles of CeO₂ nanocubes measured at -196 °C. Before the measurement, the samples was pretreated as follows: 1) pretreatment of 100 mg CeO₂ in 30 ml/min N_2 at 300°C for 120 min; 2) cooling down to room temperature and O₂ adsorption for 10min; 3) purging with N_2 for 10 min.

References

- 1. S.Y. Huang, C.B. Zhang and H. He, J. Environ. Sci., 2009, 21, 985–990.
- 2. S.C. Kim and W.G. Shim, Appl. Catal. B, 2009, 92, 429–436.
- 3. Y.F. Wang, C.B. Zhang, F.D. Liu and H. He, Appl. Catal. B, 2013, 142–143, 72–79.
- 4. Ph. Dégé, L. Pinard and P. Magnoux, Appl. Catal. B, 2000, 27, 17–26.
- M.N. Padilla-Serrano, F.J. Maldonado-Hódar and C. Moreno-Castilla, *Appl. Catal. B*, 2005, 61, 253–258.
- 6. S.C. Kim, J. Hazard. Mater., 2002, 91, 285–299.
- 7. R. Beauchet, P. Magnoux and J. Mijoin, Catal. Today, 2007, 124, 118-123.
- T.H. de Keijser, J.I. Langford, E.J. Mittemeijer and A.B.P. Vogels, *J. Appl. Cryst.*, 1982, 15, 308–314.
- 9. R. Si and M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed., 2008, 47, 2884–2887.