Supplementary Material

Fe-doped Beta Zeolite from Organotemplate-free Synthesis for NH₃-SCR of NO_x

Yongjun Zhu^a, Bingbing Chen^a, Rongrong Zhao^a, Qi Zhao^a, Hermann Gies^b, Feng-Shou Xiao^c, Dirk De Vos^d, Toshiyuki Yokoi^e, Xinhe Bao^f, Ute Kolb^g, Mathias Feyen^h, Stefan Maurer^h, Ahmad Moiniⁱ, Ulrich Müller^h, Chuan Shi^{a,*}, Weiping Zhang^{a,*}

^aState Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
^bInstitute für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Germany
^cDepartment of Chemistry, Zhejiang University, Hangzhou 310028, China
^dCentre for Surface Chemistry and Catalysis, K. U. Leuven, Leuven, Belgium
^eChemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
^fState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian 116023, China
^gInstitut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
^hBASF SE, Process Research and Chemical Engineering, 67056 Ludwigshafen, Germany

Catalysts	Fe content (wt %)	Si/Al	Catalysts	Fe content (wt %)	Si/Al
H-Beta-9	—	9	H-Beta-19		19
Fe(0.2)-Beta-9	0.2	9	Fe(0.1)-Beta-19	0.1	19
Fe(1.3)-Beta-9	1.3	9	Fe(1.4)-Beta-19	1.4	19
Fe(2.1)-Beta-9	2.1	9	Fe(2.3)-Beta-19	2.3	19
Fe(5.4)-Beta-9	5.4	9	Fe(5.7)-Beta-19	5.7	19

Table S1 Compositions of the as-prepared catalysts.

Index	Catalyst	Conditions	Temperature/ºC	Rate/mol _(NOx) g _(cat.) ⁻¹ s ⁻¹	
		500 ppm NO, 500			
Our work	Fe-Beta-9	ppm NH ₃ , 10% 150		5.00×10-7	
		O ₂ , N ₂ balance			
		500 ppm NO, 500			
Our work	Fe-Beta-19	ppm NH3, 10%	150	2.31×10-7	
		O ₂ , N ₂ balance			
Applied Catalysis B:		350 ppm NO, 350			
Environmental	Fe-SSZ-13	ppm NH ₃ , 14% O ₂ ,	150	9.11×10 ⁻⁸	
164(2015)407-419		N ₂ balance			
Catalysis Sajanaa &		500 ppm NO, 500			
Tachnology	Fe-BEA	ppm NH ₃ , 5% O ₂ ,	150	1.78×10 ⁻⁷	
A(2014)1350_1356		8% CO ₂ , 5% H ₂ O,			
4(2014)1550-1550		N ₂ balance			
Applied Catalysis B:		500 ppm NO, 500			
Environmental	Fe-BEA	ppm NH ₃ , 5% O ₂ ,	150	1.58×10-7	
91(2009)587-595		N ₂ balance			
Chemical Engineering		500 ppm NO, 500			
Journal	Fe-BEA	ppm NH ₃ , 5% O ₂ ,	150	4.46×10-7	
209(2012)652-660		N ₂ balance			
Applied Catalysis B:		500 ppm NO, 500			
Environmental	Fe-BEA	ppm NH ₃ , 5% O ₂ ,	150	1.58×10-7	
85(2009)109-119		N ₂ balance			
Catalysis Science &		400 ppm NO, 400			
Technology,	Fe-SSZ-13	ppm NH ₃ , 8% O ₂ ,	150	5.67×10 ⁻⁸	
4(2014)3917-3626		Ar balance			
	Fe-BEA	$[NO] = [NH_3] =$			
Catalysis Today		0.25 vol.%, [O ₂] =	150	0	
235(2014)210-225		2.5 vol.% and [He]	150	0	
		= 97 vol.%			
Chemical Engineering		1000 ppm NO_x ,			
Journal	Fe-ZSM-5	1000 ppm NH ₃ ,	150	4.69×10 ⁻⁸	
262(2015)1199-1207		5% O ₂ , N ₂ balance			

Table S2 Comparison of NO conversion rate at 150 $^{\rm o}{\rm C}$ for the as-prepared and literature reported catalysts

Fig. S1 EPR spectra of H-Beta-9 and H-Beta-19 catalysts measured at -196 °C.

Fig. S2 NH₃ conversion as a function of temperature on both Fe-Beta-9(A) and Fe-Beta-19(B) series catalysts. Conditions: NO 500 ppm; NH₃ 500 ppm, O₂ 10%, balance N₂; GHSV=80000 h⁻¹.

Fig. S3 N₂O yield as a function of temperature on both Fe-Beta-9(A) and Fe-Beta-19(B) series catalysts. Conditions: NO 500 ppm; NH₃ 500 ppm, O₂ 10%, balance N₂; GHSV=80000 h⁻¹.

Fig. S4 Selectivity to N_2 in the course of the NH₃-SCR reaction over Fe-Beta-9 (A) and Fe-Beta-19 (B) series catalysts. Conditions: NO 500 ppm; NH₃ 500 ppm, O₂ 10%, balance N_2 ; GHSV=80000 h⁻¹.

Fig. S5 Correlations of NO conversion at 550 °C as a function of clustered and bulked Fe species content of Fe-Beta-9 and Fe-Beta-19 series catalysts.

Fig. S6 XRD patterns of both Fe-Beta-9(A) and Fe-Beta-19(B) series catalysts. Where "A750, A850" are denoted that the catalyst have been treated under 10 % H_2O vapor /Ar at 750 °C and 850 °C for 10 h, respectively.

Fig. S7 ²⁷Al MAS NMR spectrum of Fe(2.1)-Beta-9(A) and Fe(2.3)-Beta-19 series catalysts. Where "A750, A850" are denoted that the catalyst have been treated under 10 % H₂O vapor /Ar at 750 °C and 850 °C for 10 h, respectively.

Fig. S8 NH₃-TPD profiles of the indicated catalysts with ammonia adsorbed at RT for 60 min, temperature ramping rate: 10 °C/min.