Electronic Supporting Information

Supported Bimetallic Nano-alloys as Highly Active Catalysts for the One-Pot

Tandem Synthesis of Imines and Secondary Amines from Nitrobenzene and

Alcohols

Meenakshisundaram Sankar ^{a,b*}, Qian He^c, Simon Dawson^b, Ewa Nowicka^b, Li Lu^c, Pieter C. A. Bruijnincx^a, Andrew M. Beale^{a,d,e}, Christopher J. Kiely^c, and Bert M. Weckhuvsen^{a,*}

^a Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials
Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
^b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10
3AT, UK.

^c Department of Material Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.

^d UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK.

^e Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

Corresponding authors: Dr. Meenakshisundaram Sankar, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK. Ph: +44(0)-29-2087 5748, Email: <u>Sankar@cardiff.ac.uk</u>

and

Prof dr. ir. Bert M. Weckhuysen, Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. Email: <u>B.M.Weckhuysen@uu.nl</u>

Figure S1. Time-on-line profile of the total TON and individual product TONs for the tandem synthesis of *N*-benzylideneaniline (*5*) and *N*-benzylaniline (*6*) using the 1%Ru-Pd/TiO₂ (M_{Im}) catalyst. *Reaction conditions:* catalyst: 0.1 g; nitrobenzene: 4.5 mmol; benzyl alcohol: 45 mmol; mesitylene (solvent): 5 mL; catalyst: 100 mg; Ar: 20 bar; T: 433 K. The TONs are calculated using the nominal molar metal loading, the moles of substrate (*3*) consumed and the moles of product (*6*) formed.

Figure S2. Representative high angle annular dark field (HAADF) images of the (a) 1%Au-Pd/TiO₂ and (b) 1%Ru-Pd/TiO₂ M_{Im} samples showing the existence of sub-nm metal clusters (white circles).

Figure S3. Isolated Au L₃-edge and Pd K-edge EXAFS and associated Fourier Transform data for the two-shell fits for 1% Au-Pd/TiO₂ (S_{Im}). *Key:* Solid line: experimental data, dotted line: theoretical fit; top two spectra were recorded at Au L₃ edge and bottom two spectra were recorded at Pd K-edge. EXAFS spectra were fitted in k-space.