Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Novel poly(2-oxazoline)s with pendant L-prolinamide moieties as efficient

organocatalysts for direct asymmetric aldol reaction

Yao Wang, Huifang Shen, Le Zhou, Fangyu Hu, Shoulei Xie and Liming Jiang*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization,

Department of Polymer Science and Engineering,

Zhejiang University, Hangzhou 310027, China

Correspondence to: L. Jiang (E-mail: cejlm@zju.edu.cn)

1. Monomer synthesis

2. Spectroscopic data

Figure S1. ¹H NMR of the intermediate product (S)-1

Figure S2. ¹³C NMR spectrum of the intermediate product (S)-1

Figure S6. ¹H NMR spectrum of (S)-PhgOX

Figure S7. ¹³C NMR spectrum of (*S*)-PhgOX

Figure S9. ¹H NMR spectrum of (*RS*)-PheOX

Figure S10. ¹³C NMR spectrum of (*RS*)-PheOX

Figure 11. MS (ESI+) of (RS)-PheOX

Figure S12. ¹H NMR spectrum of the model compound (*S*)-M1

Figure S14. MS (ESI+) of (*S*)-**M1**

Figure S15. SEC traces of (*S*)-PPheOX_{NHBoc} samples, PMMA standard, DMF with 50 mM LiBr as the eluent. Polymerization conditions: $[M]_0 = 1 \sim 4.0 \text{ M}$, $[M]_0/[I]_0 = 100$, acetonitrile, using Sc(OTf)₃ as the initiator, 90°C, 2 h.

Figure S16. SEC traces of (*S*)-PPheOX_{NHBoc} samples collected periodically from the polymerization kinetic experiments, PMMA standard, DMF with 50 mM LiBr as the eluent. Polymerization conditions: $[M]_0 = 2$ M, $[M]_0/[I]_0 = 100$, acetonitrile, using Sc(OTf)₃ as the initiator, reaction temperature: 90°C.

Figure S17. Comparison of SEC traces of (*S*)-PPheOX_{NHBoc} and (*S*)-PPheOX_{NHProBoc}. (A), (B), C, and D correspond to Entries 2–5 in Table 1, respectively.

Figure S18. A representative Maldi Tof MS of (S)-PPheOXNHPro.

No.	Ret.Time/min	Peak Name	Height/ mAU	Area/ mAU*min	Rel.Area/%
1	21.91	1#	151.894	95.055	5.22
2	26.95	2#	159.086	132.068	7.25
3	29.34	3#	305.176	262.831	14.43
4	39.02	4#	1231.101	1331.268	73.10
Total:			1847.256	1821.222	100.00

Figure S19. Representative HPLC curve of aldol products of cyclohexanone with 4-nitrobenzaldehyde and the corresponding analysis data.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area
	min		mAU	mAU*min	%
1	16.31	1#	1934.904	1110.879	28.44
2	20.95	2#	1849.659	1682.576	43.07
3	27.41	3#	389.444	289.231	7.40
4	28.55	4#	732.105	823.675	21.09
Total:			4906.111	3906.361	100.00

Figure S20. Representative HPLC curve of aldol products of cyclopentanone with 4-nitrobenzaldehyde and the corresponding analysis data.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area
	min		mAU	mAU*min	%
1	27.66	1#	600.274	701.190	21.02
2	33.58	2#	184.272	247.817	7.43
3	43.43	3#	141.953	235.589	7.06
4	50.95	4#	1155.043	2151.849	64.50
Total:			2081.542	3336.446	100.00

Figure S21. Representative HPLC curve of aldol products of 4-pyranone with 4-nitrobenzaldehyde and the corresponding analysis data.

Figure S22. CD titration of (*RS*)-PPheOX_{NHPro} (10^{-3} M) with TFA (0 ~ 1 equiv.) in CH₂Cl₂ containing ~1% water at 25°C.

Figure 23. CD titration of (*S*)-**M1** with TFA (0 ~ 1 equiv.) in CH_2Cl_2 containing ~1% water at 25°C.

POXNHBoc	M/I	Yield $(\%)^b$	$\frac{M_n^c}{(10^3)}$	PDI ^c	POXNHPro	E_{NHPro}^{d}	$[\alpha]^{20e}_{\mathrm{D}}$
(<i>R</i>)-P1	100	90	6.7	1.13	(R)-PPheOX _{NHPro}	97	-30
	200	83	10.0	1.09		95	-30
(<i>RS</i>)-P1	100	92	7.6	1.09	(RS)-PPheOX _{NHPro}	95	-26
	200	75	10.1	1.1		95	-28
(<i>S</i>)-P2	100	87	5.7	1.16	(S)-PPhgOX _{NHPro}	97	-31
	200	75	9.2	1.11		98	-32
(<i>R</i>)-P2	100	90	5.9	1.15	(R)-PPhgOX _{NHPro}	96	-35
	200	71	8.3	1.12		98	-39

Table S1 Results on the cationic ring-opening polymerization of 2-oxazolines and thepost-modification for the resulting polymers a

^{*a*} Polymerization conditions: [M] = 2 mol/L, CH₃CN, 90°C, 3 h. ^{*b*} Isolated yield. ^{*c*} Determined by SEC measurements, PS calibration, THF as the eluent. ^{*d*} Amide coupling efficiency of repeating monomeric units was measured by ¹H NMR integration (CDCl₃). ^{*e*} c = 10 mg/mL, MeOH, 20°C. (*R*)-P1 = (*R*)-PPheOX_{NHBoc}, (*RS*)-P1 = (*RS*)-PPheOX_{NHBoc}, (*S*)-P2 = (*S*)-PPhgOX_{NHBoc}, (*R*)-P2 = (*R*)-PPhgOX_{NHBoc}. The corresponding monomers are (*R*)-PheOX, (*RS*)-PheOX, (*S*)-PhgOX, and (*R*)-PhgOX, respectively.

	o	$+ H \xrightarrow{O}_{NO_2} \xrightarrow{O}_{anti-} $	+ NO ₂	OH syn-	NO ₂	
Entry	Loading ^b [mol-%]	Solvent (total 1 mL)	Time [h]	Yield ^c [%]	anti:syn ^d	ee ^e
1	20	MeOH or DMSO or NMP	48	<5	_	_
2	20	H ₂ O	12	82	81:19	65
3	10	MeOH/H ₂ O (1:1)	36	85	72:28	45
4	20	MeOH/H ₂ O (1:1)	12	72	79:21	74
5	10	NMP/H ₂ O (1:1)	12	95	88:12	68
6	20	NMP/H ₂ O (1:1)	12	98	83:17	80
7	20	DMSO/H ₂ O (1:1)	24	82	81:19	60
8^{f}	20	none	48	<5	_	_

Table S2 Effect of solvent on the direct asymmetric aldol reaction of cyclohexanonewith 4-nitrobenzaldehyde in the presence of polymeric catalyst (S)-PPheOX $_{NHPro}^{a}$

^a Reaction conditions: aldehyde (0.25 mmol), cyclohexanone (5 mmol, 0.516 mL), 10°C. ^b Catalyst 20 mol-% or 10 mol-% in the repeating units. ^c Isolated yield. ^d Determined by ¹H NMR spectroscopic analysis of the crude product. ^e Determined by HPLC using a chiral column; *ee* values are referred to the major isomer. ^f In this case, cyclohexanone served as solvent.

Table S3 Effect of the molar mass on the catalytic activity of (S)-PPheOX_{NHPro} in the direct aldol reaction.

	Ĺ	H H H H H H H H H H	t.	+ NO ₂ Syn-	NO ₂	
Entry	M _n	$H_2O/TFA(\mu L)$	Time (h)	Yield ^b (%)	anti/syn ^c	ee ^d (%)
1	4000	9:2	12	92	80/20	92
2	4000	9:2.6	24	70	80/20	93
3	6700	9:2	12	96	78/22	91
4	6700	9:2.6	24	66	71/29	93
5	9000	9:2	12	98	84/16	89

6	9000	9:2.6	24	68	77/23	92
7	10400	9:2	12	97	78/22	88
8	10400	9:2.6	24	64	83/17	89