TiO₂@h-CeO₂: a composite yolk-shell microsphere with enhanced

photodegradation activity

Bing Yuan, Yu Long*, Li Wu, Kun Liang, He Wen, Sha Luo, Hongfei Huo, Honglei Yang and Jiantai Ma*

Supporting Information

Synthesis of anatase spheres and h-CeO₂ spheres

The anatase spheres and h-CeO₂ spheres were prepared for contrast test, and their synthesis routes were shown in Scheme 1.

Synthesis of anatase nanosphere

At first, the resulting TP spheres were dispersed in the ethanol water mixture (12 mL, 2:1 by volume) and $NH_3 \cdot H_2O$ (0.2 mL). Then, the mixture was sealed within a

Teflon-lined autoclave (20 mL) and kept at 160°C for 16 h. At last, anatase spheres

were acquired by centrifugation, washing with ethanol, and calcination at 550° C for 2 h.

....

Synthesis of h-CeO₂ nanosphere

Synthesis of SiO₂ template Monodisperse SiO₂ spheres were prepared by a slightly modified Stöber process. Briefly, TEOS (4.5 mL) was rapidly injected into a solution of ethanol (62 mL), H₂O (25 mL), and NH₃·H₂O (1.5 mL), then kept stirring for 2 h.

After centrifugation and washed with ethanol, the obtained spheres were dried at 50 °C.

Synthesis of SiO₂@CeO₂@SiO₂ sphere and h-CeO₂ catalyst The synthesis procedure of SiO₂@CeO₂@SiO₂ spheres was same with the preparation procedure of TP@SiO₂@CeO₂@SiO₂, but with SiO₂ spheres in place of TP@SiO₂. After the

acquirement of SiO₂@CeO₂@SiO₂, this light yellow powder was calcined at 900°C

for 2 h. Then, NaOH etching treatment described before was carried out again.

Fig. S1 FT-IR spectra of anatase sphere, h-CeO₂, and TiO₂@h-CeO₂. All three samples were dried at 80°C overnight. The assignments of the stretching vibration bands of Ce-O-Ce and Si-O-Si were about 480 and 1120 cm⁻¹. And the Ti-O-Ti band was observed at a broad absorption from 500 to 800 cm⁻¹. The peaks around 3400 cm⁻¹ were due to the -O-H stretching vibrations. The insert image was an enlargement of -O-H stretching vibrations.

Fig. S2 TEM images of CeO₂ coated TP.

Fig. S3 Images of anatase sphere (left) and $TiO_2@h-CeO_2$ (right) suspensions kept steady for different times. The contents of both materials were 1 mg/ mL. And the suspensions were treated with ultrasonication for 30 min before kept steady.

Fig. S4 The images of color variations during photodegradation of MB.

Fig. S5 Trapping experiment of active species during the photocatalytic degradation with 20 min high-pressure mercury lamp irradiation.