Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting information

Insight into the mechanism and site-selectivity

of Rh_{2^{II,II}(esp)₂-catalyzed intermolecular}

C-H amination

Juping Wang, *^a Cunyuan Zhao^b, Yuping Weng^a and Huiying Xu^b

^a School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
^b School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China

Table of contents

1. Three-center Rh1-Rh2-N σ and π orbital interactionS3
2. Optimized structures and important geometrical parameters of the species in the C-H amination
pathways for S ₁ S4
3. Optimized structures and important geometrical parameters of the species in the C-H amination
pathways for S ₃ S5
4. Surface Plots of the spin Denzylic Distribution of S_2 - ³ IM2 and S_2 - ³ TS2 and Frontier Molecular Orbitals of
S ₂ - ³ IM2, S ₂ - ³ TS2 and S ₂ - ¹ CP
5. Free Energy Profiles of Intermolecular C-H Aminations for the isoamylbenzene-derived substrate
\boldsymbol{S}_1 and \boldsymbol{S}_3 S7
6. Free Energy Profiles of Intermolecular C-H Aminations for the substrate S'
7. Optimized structures and important geometrical parameters of the species in the C-H amination
pathways for S '

8. Thermal free energies in gas phase, so	Ivation ene	ergy in	benzene	e, rela	ative fre	e ene	ergies and
activation free energies in solution of the	species ir	n the	benzylic	and	tertiary	C-H	amination
pathways for S_2 .							S10
9. Detailed spin density distribution of all	species ir	n the	benzylic	and	tertiary	C-H	amination
pathways for S_1 , S_2 , S_3							S11
10. Detailed NBO charge analysis of all	species in	the	benzylic	and	tertiary	C-H	amination
pathways for S_1 , S_2 , S_3							S12

Fig. S1 Three-center Rh1-Rh2-N $\,\,\sigma\,\,$ and $\,\,\pi\,\,$ orbital interaction

Fig. S2 Optimized structures and important geometrical parameters of the species in the benzylic and tertiary C-H amination pathways for S_1 . For clarity, the structure of species is visualized in different layers. Values without and with parentheses are for triplet and singlet states, respectively.

Fig. S3 Optimized structures and important geometrical parameters of the species in the benzylic and tertiary C-H amination pathways for S_3 . For clarity, the structure of species is Visualized in different layers. Values without and with parentheses are for triplet and singlet states, respectively.

Fig. S4 (a) Surface plots of the spin denzylic distribution of S_2 -³IM2 and S_2 -³TS2. (b) Frontier molecular orbitals of S_2 -³IM2, S_2 -³TS2 and S_2 -¹CP.

Fig. S5 (a) (b) Free energy profiles of intermolecular C-H aminations for the isoamylbenzene-derived substrate S_1 and S_3 , respectively.

Fig. S6 Free energy profiles of intermolecular C-H aminations for the substrate S'.

S'-³IM2_B

Fig. S7 Optimized structures and important geometrical parameters of the species in the benzylic and tertiary C-H amination pathways for **S**'. Values without and with parentheses are for triplet and singlet states, respectively.

species	G _{gas} (a.u.)	G _{sol} (kcal/mol)	$\Delta G^{\rm rel}_{\rm sol}$ (kcal/mol)	ΔG [≠] sol (kcal/mol)
³ IM1	-2804.376613	-26.2	0	
¹ IM1	-2804.373791	-25.89	2.1	
S ₂ - ³ TS1 _B	-3232.885064	-30.97	20.4	20.4
S ₂ - ¹ TS1 _B	-3232.883138	-31.42	21.2	21.2
S₂- ³ TS1⊤	-3232.882532	-31.34	21.7	21.7
S₂-¹TS1⊤	-3232.880346	-31.47	22.9	22.9
S ₂ - ³ IM2 _В	-3232.908056	-32.61	4.4	
S ₂ - ³ IM2 _T	-3232.898384	-32.21	10.8	
S ₂ - ³ TS2 _B	-3232.885563	-30.8	20.3	20.3
S₂- ³ TS2⊤	-3232.879339	-31.74	23.3	23.3
S ₂ - ¹ CP _B	-3232.953992	-29.98	-21.8	
S ₂ - ¹ CP _T	-3232.943083	-30.96	-16.0	
S ₂ - ¹ PC _B	-1483.902637	-11.2	-29.1	
S ₂ - ¹ PC _T	-1483.905213	-12.35	-31.9	

Table S1 Thermal free energies in gas phase, solvation energy (G_{sol}) in benzene, relative free energies and activation free energies in solution of the species in the benzylic and tertiary C-H amination pathways for S_2 .

Species	Rh1	Rh2	Ν	C3/C5 ^a	H4/H6 ^b	Ph group
³ IM1	0.353	0.475	0.933	_	_	—
S ₁ - ³ TS1 _B	0.249	0.372	0.638	0.291	-0.004	0.229
S₁-³TS1⊤	0.295	0.384	0.653	0.413	-0.007	0.026
S ₁ - ³ IM2 _B	0.283	0.475	0.261	0.610	-0.005	0.247
S₁- ³ IM2⊤	0.291	0.392	0.289	0.838	0.025	0.017
S₁-³TS2 _B	0.358	1.058	0.074	0.195	-0.001	0.077
S₁- ³ TS2⊤	0.699	0.679	0.004	0.471	0.001	0.010
S ₂ - ³ TS1 _B	0.274	0.386	0.663	0.318	-0.010	0.189
S₂-³TS1⊤	0.299	0.386	0.658	0.416	-0.009	0.019
S ₂ - ³ IM2 _В	0.275	0.376	0.277	0.702	-0.005	0.321
S₂- ³ IM2⊤	0.289	0.391	0.289	0.846	0.022	0.019
S_2 - ³ TS2 _B	0.613	0.814	0.001	0.285	0.002	0.134
S₂- ³ TS2⊤	0.706	0.672	-0.001	0.477	0.001	0.010
S₃-³TS1 _B	0.271	0.393	0.673	0.317	-0.015	0.170
S₃-³TS1⊤	0.298	0.387	0.661	0.421	-0.011	0.015
S ₃ - ³ IM2 _В	0.270	0.370	0.281	0.695	-0.007	0.318
S₃-³IM2⊤	0.282	0.383	0.290	0.855	0.023	0.022
S₃-³TS2 _B	0.712	0.648	0.014	0.337	0.002	0.175
S ₃ - ³ TS2 _T	0.708	0.660	-0.005	0.491	0.001	0.012

Table S2 Detailed spin density distribution of all species in the benzylic and tertiary C-H amination pathways for S_1 , S_2 , S_3 .

^a In C3/C5 column, the value is corresponding to C3 atom for the species S_m -³TS1_B, S_m -³IM2_B and S_m -³TS2_B while the value is corresponding to C5 atom for the species S_m -³TS1_T, S_m -³IM2_T and S_m -³TS2_T.

^b In H4/H6 column, the value is corresponding to H4 atom for the species S_m-³TS1_B, S_m-³IM2_B and S_m-³TS2_B while the value is corresponding to H6 atom for the species S_m-³TS1_T, S_m-³IM2_T and S_m-³TS2_T.

	Rh1	Rh2	Ν	C3/C5 ^a	H4/H6 ^b	Ph group	R
Rh ₂ (esp) ₂	0.593	0.593	_	_	_	—	—
³ IM1	0.586	0.528	-0.557	_	_	_	_
¹ IM1	0.565	0.520	-0.557	_	_	_	_
S_1 -3TS1 _B	0.552	0.517	-0.744	-0.404	0.347	0.322	-0.153
S_1 - ¹ TS1 _B	0.539	0.501	-0.664	-0.442	0.306	0.342	-0.148
S₁-³TS1⊺	0.562	0.518	-0.746	-0.124	0.347	0.182	-0.183
S_1 - ¹ TS1 _T	0.551	0.503	-0.705	-0.154	0.319	0.206	-0.175
S ₁ - ³ IM2 _B	0.582	0.529	-0.930	-0.135	0.436	0.181	-0.167
S_1 - ³ IM2 _T	0.580	0.528	-0.911	0.067	0.428	0.165	-0.188
S_1 - ³ TS2 _B	0.575	0.543	-0.971	-0.006	0.431	0.322	-0.134
S_1 - ³ TS2 _T	0.597	0.521	-0.982	0.207	0.414	0.177	-0.182
S ₁ - ¹ CP _B	0.550	0.429	-0.832	-0.090	0.465	-0.056	-0.177
S ₁ - ¹ CP _T	0.568	0.460	-0.869	0.129	0.447	0.174	-0.189
S_2 - ³ TS1 _B	0.561	0.521	-0.730	-0.389	0.343	0.087	0.244
$S_2-^1TS1_B$	0.546	0.504	-0.678	-0.409	0.314	0.115	0.245
S_2 - ³ TS1 _T	0.565	0.520	-0.742	-0.123	0.346	-0.018	0.244
$S_2-^1TS1_T$	0.556	0.504	-0.703	-0.148	0.317	-0.006	0.244
S_2 - ³ IM2 _B	0.590	0.528	-0.917	-0.142	0.440	-0.318	0.240
S_2 - ³ IM2 _T	0.583	0.529	-0.912	0.071	0.429	-0.033	0.243
S_2 - ³ TS2 _B	0.593	0.543	-0.965	-0.026	0.429	0.053	0.247
S_2 - ³ TS2 _T	0.601	0.520	-0.979	0.205	0.414	-0.017	0.245
S ₂ - ¹ CP _B	0.554	0.434	-0.837	-0.090	0.468	0.004	0.246
S ₂ - ¹ CP _T	0.567	0.464	-0.853	0.127	0.441	-0.019	0.243
S ₃ - ³ TS1 _B	0.565	0.522	-0.729	-0.392	0.344	0.009	0.043
S ₃ -1 TS1 _В	0.551	0.505	-0.688	-0.399	0.319	0.031	0.046
S₃-³TS1⊤	0.569	0.520	-0.746	-0.122	0.346	-0.075	0.040
S₃-¹TS1⊤	0.559	0.506	-0.707	-0.143	0.319	-0.066	0.041
S ₃ - ³ IM2 _B	0.591	0.527	-0.916	-0.124	0.438	-0.147	0.030
S ₃ -³IM2 _T	0.585	0.529	-0.912	0.064	0.428	-0.088	0.039
S_3 - ³ TS2 _B	0.615	0.521	-0.952	-0.047	0.425	-0.075	0.041
S_3 -3 $TS2_T$	0.605	0.519	-0.978	0.199	0.414	-0.076	0.042
S ₃ - ¹ CP _B	0.554	0.428	-0.833	-0.093	0.466	-0.055	0.046
S₃-¹CP⊤	0.571	0.458	-0.875	0.128	0.451	-0.069	0.038

Table S3. Detailed NBO charge analysis of all species in the benzylicand tertiary C-H amination pathways for S_1 , S_2 , S_3 .

^a In C3/C5 column, the value is corresponding to C3 atom for the species S_m-ⁿTS1_B, S_m-ⁿIM2_B and S_m-ⁿTS2_B while the value is corresponding to C5 atom for the species S_m-ⁿTS1_T, S_m-ⁿIM2_T and S_m-ⁿTS2_T.

^b In H4/H6 column, the value is corresponding to H4 atom for the species S_m-ⁿTS1_B, S_m-ⁿIM2_B and S_m-ⁿTS2_B while the value is corresponding to H6 atom for the species S_m-ⁿTS1_T, S_m-ⁿIM2_T and S_m-ⁿTS2_T.