Supporting Information

Catalysis Science & Technology

Siliceous tin phosphates as effective bifunctional catalysts for selective conversion

of dihydroxyacetone to lactic acid

Xincheng Wang,^a Fengbing Liang,^b Chongpin Huang,^{*a} Yingxia Li,^a and Biaohua Chen^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Fax: 86 10 6441 9619; Tel: 86 10 6441 2054;
 E-mail: huangcp@mail.buct.edu.cn
 ^b CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences,

Qingdao 266101, China.

Table of Contents

Tables:

Table S1. Physicochemical properties of the calcined siliceous tin phosphates.

Table S2. Conversion of DHA and product yields over different calcined tin phosphates in water.

Table S3. Conversion of DHA and product yields over different tin phosphates in water.

Table S4. Characterization of recycled as-synthesized Si₆-Sn(IV)P and Sn(IV)P catalyst by adsorption, ICP, and TGA analysis.

Figures:

Fig. S1. HPLC chromatogram of the aqueous phase obtained from the hydrothermal treatment of GLA (conditions: 0.3125 M GLA, 80 mg Si₆-Sn(IV)P, 140 °C, 15 min).

Fig. S2. Wide-angle XRD profile of the Si₆-Sn(IV)P catalyst.

Fig. S3. TEM images of the as-synthesized (left) and calcined (right) Si₆-Sn(IV)P.

Fig. S4. UV-vis DRS spectra of the as-synthesized and calcined Si_6 -Sn(IV)P. The recycled line is the spectrum of the assynthesized sample after the 3rd reuse.

Fig. S5. NH_3 -TPD curves of Si₆-Sn(IV)P. The signals are scaled to weight.

Fig. S6. Deconvoluted XPS spectra of O 1s for as-synthesized (a) and calcined (b) Si₆-Sn(IV)P samples.

Fig. S7. The results of DHA conversion after 5 h (Conditions: 0.3125 M DHA, 80 mg Catalyst, 140 °C, 6 h). Sn-Beta and Sn(IV)P were used as references.

Fig. S8. TGA analysis of uncalcined silica modified tin phosphates with varying TEOS amounts.

 Table S1 Physicochemical properties of the calcined siliceous tin phosphates.

Entry	Catalyst	Sn source	Specific			
			surface	Sn content ^a	Si content ^a	Total acid sites ^b
			area			
			(m² g-1)	wt%	wt%	(mmol g ⁻¹)
1	Sn(IV)P	SnCl₄·5H₂O	168	47.2	-	0.67
2	Si ₆ -Sn(IV)P-o	SnO ₂	171	60.8	9.3	0.17
3	Si ₆ -Sn(II)P	SnCl₂·2H₂O	135	22.3	11.4	0.11
4	Si ₂ -Sn(IV)P	SnCl₄·5H₂O	176	44.5	5.1	0.55
5	Si ₄ -Sn(IV)P	SnCl₄·5H₂O	208	39.2	10.2	0.51
6	Si ₆ -Sn(IV)P	SnCl₄·5H₂O	192	34.6	13.2	0.46
7	Si ₈ -Sn(IV)P	SnCl₄·5H₂O	157	31.7	16.5	0.41
8	Si ₁₀ -Sn(IV)P	SnCl₄·5H₂O	173	28.4	18.8	0.35
9	Si ₆ -Sn(IV)P-g ^c	SnCl₄·5H₂O	139	30.1	14.6	0.42

^a Dtermined by ICP analysis, ^b Determined by ammonia TPD, ^c The silicon source is silica gel.

Table S2. Conversion of DHA and product yields over different calcined tin phosphates inwater.^a

Catalyst	Conv. (%)	PA (%)	LA (%)
Si ₂ -Sn(IV)P	45.7	39.7	5.9
Si ₄ -Sn(IV)P	39.1	31.4	4.3
Si ₆ -Sn(IV)P	36.4	30.6	3.4
Si ₈ -Sn(IV)P	30.6	25.8	2.5
Si ₁₀ -Sn(IV)P	26.3	20.5	3.4
	Catalyst Si ₂ -Sn(IV)P Si ₄ -Sn(IV)P Si ₆ -Sn(IV)P Si ₈ -Sn(IV)P Si ₁₀ -Sn(IV)P	Catalyst Conv. (%) Si_2 -Sn(IV)P 45.7 Si_4 -Sn(IV)P 39.1 Si_6 -Sn(IV)P 36.4 Si_8 -Sn(IV)P 30.6 Si_{10} -Sn(IV)P 26.3	CatalystConv. (%)PA (%) Si_2 -Sn(IV)P45.739.7 Si_4 -Sn(IV)P39.131.4 Si_6 -Sn(IV)P36.430.6 Si_8 -Sn(IV)P30.625.8 Si_{10} -Sn(IV)P26.320.5

^a Reaction conditions: 0.3125 M DHA, 80 mg Catalysts, 140 °C, 15 min.

water				
Entry	Catalyst	Conv. (%)	PA (%)	LA (%)
1	Blank	1.01	<0.5	<0.5
2	H ₃ PO ₄	23.1	18.6	0.8
3	SnCl₄·5H₂O	28.3	20.7	4.1
4	$SnCl_2 \cdot 2H_2O$	27.3	23.6	5.4
5	Si ₆ -Sn(IV)P-o	3.3	1.8	<0.5
6	Si ₆ -Sn(II)P	2.5	1.4	<0.5
7	Si ₂ -Sn(IV)P	70.8	59.2	9.4
8	Si ₄ -Sn(IV)P	72.7	58.3	12.5
9	Si ₆ -Sn(IV)P	72.8	58.6	12.6
10	Si ₈ -Sn(IV)P	75.9	56.7	11.2
11	Si ₁₀ -Sn(IV)P	57.4	45.0	10.1
12	Sn-Beta	27.5	5.1	14.3

Table S3. Conversion of DHA and product yields over as-synthesized tin phosphates in water^a

^a Reaction conditions: 0.3125 M DHA, 80 mg Catalysts, 140 °C, 15 min.

	Run	Specific	Total	Relative	Relative	Weight loss	Carbon
Catalyst		surface area	acid sites	Sn content	P content	weight loss	deposition
		(m² g-1)	(mmol g ⁻¹)	(%)	(%)	(%)	(%)
	Fresh	137	0.77	100	100	9.1	-
Si Sp(1)/)D	1	135	0.73	96.3	94.6	9.35	0.25
31 ₆ -311(1V)P	2	141	0.65	95.7	93.1	9.41	0.31
	3	129	0.63	95.2	92.5	9.59	0.49
	Fresh	146	0.72	100	100	16.2	-
	1	140	0.65	94.5	93.7	16.91	0.71
511(17)P	2	137	0.59	93.6	92.5	17.13	0.93
	3	131	0.53	92.2	92.0	17.45	1.25

Table S4. Characterization of recycled as-synthesized Si₆-Sn(IV)P and Sn(IV)P catalyst by adsorption, ICP, and TGA analysis.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S7.

