Electronic Supplementary Information for

New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C₃N₄ nanosheets

Zilin Ni,^a Fan Dong,^{*,a} Hongwei Huang ^b and Yuxin Zhang ^b

^a Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.

^b College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, China.

* To whom correspondence should be addressed. Tel/Fax: + 23-62769785-605,E-mail: dfctbu@126.com (Fan Dong)

Scheme S1. Schematic of photocatalytic experimental setup for NOx removal.

Scheme S2. Schematic of experimental setup for the photocatalytic reduction of CO₂.

Figure S1. TEM images (a ,b, c) of C_3N_4 -Pd-5% photocatalysts.

Figure S2. HRTEM images (a, b) of C_3N_4 -Pd-5% photocatalysts.

Figure S3. UV-vis DRS (a), TEM image (b), and Visible-light photocatalytic

performance of Pd^{2+}/C_3N_4 for NO removal.

Synthesis of Pd²⁺/C₃N₄ samples.

To prepare Pd^{2+}/C_3N_4 composites, 1.0 g of the as-prepared g- C_3N_4 was added into 100 mL of ethanol and was sonicated for 2 h to get thin g- C_3N_4 nanosheets. The resultant was dried at 60 °C. Then, 1g of the dried thin g- C_3N_4 nanosheets was added

into 100 mL of H₂O and was kept stirring for 30 min. Then, an appropriate amount of $Pd(NO_3)_2$ dissolved in 60 mL of H₂O was added dropwise into the above suspension (n(Pd) : n(C₃N₄) = 5%). After stirring for 30 min, the resulted suspension was aged for 2 h. Finally, the Pd²⁺/C₃N₄ samples were collected by filtration, washed with water and ethanol for four times and dried at 60 °C.

To explore the effect of Pd^{2+} on NO removal performance, we conducted an experiment in which g-C₃N₄ was immersed in $Pd(NO_3)_2$ and the photocatalytic activity of Pd^{2+}/C_3N_4 was tested as shown in Electronic Supplementary Information (Figure S3). The NO removal ratio of Pd^{2+}/C_3N_4 was 47.6%, slightly higher than the individual g-C₃N₄ (40.7%). The test showed that Pd^{2+} enriched composition did little to influence the photocatalytic activity in comparison with C₃N₄-Pd-5% (60.6%). It was Pd nanoparticles that played a dominant role in the enhancement of photocatalytic activity.

Figure S4. Visible-light photocatalytic performance of heat-treated C₃N₄-Pd-5% for

NO removal.

Synthesis of heat-treated C₃N₄-Pd-5% samples.

The as-prepared C_3N_4 -Pd-5% samples are under heat treatment for 400 °C in an hour to get heat-treated C_3N_4 -Pd-5% samples.