Supporting Information for

Yolk–Shell–Structured Mesoporous Silica: A Bifunctional Catalyst for Nitroaldol– Michael One-Pot Cascade Reaction

Juzeng An, Tanyu Cheng, Xi Xiong, Liang Wu, Bing Han, and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai 200241, P. R. China

	Content	Page				
Experimental	General	S2				
Figure S1	The FT-IR spectra of 1 , the benzaldehyde-treated 1 and and catalyst 3 .	S2				
Figure S2	The TG/DTA curves of 1 and catalyst 3 .					
Figure S3	The pore size distribution curves of 1 and catalyst 3 .	S4				
Figure S4	The TEM imanges of the fresh catalyst 3 and the catalyst 3 after reaction with stirring.					
Figure S5	One-pot enantioselective cascade nitroaldol–Michael coupling of nitromethane, aldehydes and acetylacetone					
Figure S6	Reusability of catalyst 3 for enantioselective cascade nitroaldol– Michael coupling of nitromethane, benzaldehydes and acetylacetone					
Figure S7	¹ H-NMR and ¹³ C-NMR of all chiral products.	S23				
	References	S38				

Experimental

General: All experiments, which were sensitive to moisture or air, were carried out under an Ar atmosphere using standard Schlenk techniques. tetraethoxysilane (TEOS), 1,4bis(triethyoxysilyl)ethane, cetyltrimethylammonium bromide (CTAB), fluorocarbon surfactant (FC-4: $[C_3F_7O(CF(CF_3)CF_2O)_2CF(CF_3)CONH(CH_2)_3N^+(C_2H_5)_2CH_3]\Gamma),$ surfactant P123 (CH₂-3-(triethoxysilyl)propan-1-amine, CH₂O)₂₀(CH₂(CH₃)CH₂O)₇₀(CH₂CH₂O)₂₀), 3mercaptopropyltrimethoxylsilane, 3-((3,5-bis(trifluoromethyl)benzyl)amino-4-((((1R)-(6methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methyl)amino)cyclobut-3-ene-1,2-dione were purchased from Sigma-Aldrich Company Ltd. and used as received.

Figure S1. FT-IR spectra of 1, the benzaldehyde-treated 1 and catalyst 3.

Explanation: The TG/DTA curve of **1** was treated in the air. An endothermic peak around 362 K with weight loss of (100-85.57) 14.43% could be attributed to the release of physical adsorption water. In addition, the weight loss of (85.57-63.39) 22.18% between 463 and 1000 K could be assigned to the organic moieties (the oxidation of alkyl fragments and parts of ethylene-bridged group in material). When eliminated the contribution of water, the total weight loss the organic moieties is 25.92%.

For catalyst **3**, an endothermic peak around 367 K with weight loss of (100-88.06) 11.94% could be attributed to the release of physical adsorption water. In addition, the weight loss of (88.06-53.88) 34.18% between 463 and 1000 K could be assigned to the oxidation of alkyl-linked squaramide, alkyl fragments and parts of ethylene-bridged group in material). When eliminated the contribution of water, the total weight loss the organic moieties is 38.81%.

Thus, in contrast to TG/DTA curve of **1** and catalyst **3**, the true weight loss of squaramide is 12.89% (38.81-25.92%), meaning the mole amounts of squaramide is 0.01995 mmol% (Mr = 646). The mole amount of squaramide in the material is <u>0.1995 mmol (128.90 mg) per gram material</u>.

Figure S4. The TEM images of the fresh catalyst **3** and the catalyst **3** after reaction with stirring. TEM images of the fresh catalyst **3**

TEM images of the catalyst **3** after reaction with stirring

Figure S5. One-pot enantioselective cascade nitroaldol–Michael coupling of nitromethane, aldehydes and acetylacetone.

Translation of Chinese to English is as follows:

Peak A		ĸ	RetTime [min] ▲	Time Area rati nin] % ♦ ↓ ↓		Heighth A		Туре ∳			Structure						
	9 4	名称	保留时间 (分钟)	面积 (微伏*秒)	% 面积	高度 (微伏)	单位	峰类型	峰代码	结构 1 名	结构 1 说明	结构 1 分子量	结构 1 公式	结构 1 结构	相对 RT (分钟)	RT 比率	%商
			8.923	6364702	50.60	223804		未知						e			60.55
	2		11.620	6214874	49.40	145791		未知						C			39.45

<u>6a (Entry 1 in Table 1)</u>: (S)-3-(2-nitro-1-phenylethyl)pentane-2,4-dione (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C).

<u>6b (Entry 3 in Table 1)</u>: (S)-3-(1-(4-fluorophenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C).

<u>*6c* (Entry 4 in Table 1)</u>: **(S)-3-(1-(4-chlorophenyl)-2-nitroethyl)pentane-2,4-dione.** (HPLC: Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C).

<u>*6e* (Entry 6 in Table 1):</u> (S)-3-(1-(2-chlorophenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/02, flow rate = 1.0 mL/min, 25 °C).

<u>*6f* (Entry 7 in Table 1):</u> (S)-3-(1-(4-bromophenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C).

<u>6g (Entry 8 in Table 1)</u>: (S)-3-(1-(3-bromophenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C).

<u>6h (Entry 9 in Table 1)</u>: (S)-3-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)pentane-2,4-dione. (HPLC: Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 95/05, flow rate = 1.0 mL/min, 25 °C).

<u>6i (Entry 10 in Table 1)</u>: (S)-3-(2-nitro-1-(3-(trifluoromethyl)phenyl)ethyl)pentane-2,4-dione. (HPLC: Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 95/05, flow rate = 1.0 mL/min, 25 °C).

<u>*6j* (Entry 11 in Table 1)</u>: **(R)-3-(2-nitro-1-(3-nitrophenyl)ethyl)pentane-2,4-dione.** (HPLC: Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C).

<u>*6k* (Entry 12 in Table 1)</u>: **(S)-3-(1-(4-methylphenyl)-2-nitroethyl)pentane-2,4-dione.** (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C).

<u>61 (Entry 13 in Table 1)</u>: (S)-3-(2-nitro-1-(m-tolyl)ethyl)pentane-2,4-dione. (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C).

<u>6m (Entry 14 in Table 1)</u>: (S)-3-(1-(4-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C).

6n (Entry 15 in Table 1): (S)-3-(1-(3-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 99/01, flow rate = 1.0 mL/min, 25 °C).

<u>60 (Entry 16 in Table 1)</u>: (S)-3-(1-(2-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione. (HPLC: Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 99/01, flow rate = 1.0 mL/min, 25 °C).

Figure S6. Reusability of catalyst **3** for enantioselective cascade nitroaldol–Michael coupling of nitromethane, benzaldehydes and acetylacetone.

Recycle 3

Recycle 5

Figure S7. ¹H-NMR and ¹³C-NMR of all chiral products.

<u>6a:</u> (S)-3-(2-nitro-1-phenylethyl)pentane-2,4-dione: ^[1] ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.29 (m,

detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C, t_1 = 9.29 min, t_2 =12.15min.

29.83 (s); GC/MS (m/z): 267.09; HPLC (Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C) t₁ = 14.13 min, t₂ = 15.72 min.

 $\underbrace{6c:}_{(S)-3-(1-(4-chlorophenyl)-2-nitroethyl)pentane-2,4-dione:^{[2]} ^{1}H NMR (400 MHz, CDCl_3): \delta 7.33 \\ (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 4.69-4.57 (m, 2H), 4.35 (d, J = 10.7 Hz, 1H), 4.30-4.20 (m, 1H), 2.31 (s, 3H), 1.99 (s, 3H); ^{13}C{^{1}H} NMR \\ (101 MHz, CDCl_3): \delta 201.61 (s), 200.79 (s), 134.80 (s), 134.79 (s), 129.80 (s), 129.55 (s), 78.15 (s), 70.76 (s), 42.37 (s), 30.66 (s), 29.89 (s); GC/MS (m/z): \\ \underbrace{6c:}_{(C)}$

283.06; HPLC (Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C) t₁ = 15.25min, t₂ = 16.60 min.

 $\underbrace{6d: (S)-3-(1-(3-chlorophenyl)-2-nitroethyl)pentane-2,4-dione:^{[2]} ^{1}H NMR (400 MHz, CDCl_{3}): \delta 7.33 \\ -7.29 (m, 2H), 7.22 (s, 1H), 7.12-7.07 (m, 1H), 4.70-4.59 (m, 2H), 4.37 (d, J = 10.7 Hz, 1H), 4.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 1H), 2.32 (s, 3H), 2.02 (s, 3H); ^{13}C{^{1}H} NMR (101 MHz, CDCl_{3}): \delta 201.55 (s), 200.68 (s), 138.43 (s), 135.43 (s), 130.82 (s), 129.10 (s), 128.40 (s), 126.36 (s), 77.97 (s), 70.59 (s), 42.57 (s), 30.72 (s), 29.99 (s); GC/MS (m/z): 283.06; HPLC (Chiracel AS-H, detected at 10.7 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 10.8, J = 7.6, J = 4.9 Hz, 14.24 (ddd, J = 10.8, J = 10$

215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C) t₁ = 13.69 min, t₂ = 23.85 min.

(s), 28.63 (s); GC/MS (m/z): 283.06; HPLC (Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/02, flow rate = 1.0 mL/min, 25 °C) $t_1 = 8.91 \text{ min}, t_2 = 9.61 \text{ min}.$

 $\underbrace{\mathbf{6f:}}_{\mathbf{NO}_{2}} (\mathbf{S}) - 3 - (1 - (4 - bromophenyl) - 2 - nitroethyl) pentane - 2, 4 - dione:^{[2]}: {}^{1}\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_{3}): \delta \\ 7.54 - 7.42 \text{ (m, 2H), } 7.13 - 7.05 \text{ (m, 2H), } 4.68 - 4.57 \text{ (m, 2H), } 4.35 \text{ (d, } J = 10.7 \\ \text{Hz, 1H), } 4.24 \text{ (ddd, } J = 10.8, J = 7.4, J = 5.1 \text{ Hz, 1H}, 2.32 \text{ (s, 3H), } 2.00 \text{ (s, 3H)}; \\ 1^{3}\text{C}\{{}^{1}\text{H}\} \text{ NMR} (101 \text{ MHz, CDCl}_{3}): \delta 201.58 \text{ (s), } 200.75 \text{ (s), } 135.33 \text{ (s), } 132.75 \\ \text{(s), } 129.86 \text{ (s), } 122.91 \text{ (s), } 78.07 \text{ (s), } 70.69 \text{ (s), } 42.43 \text{ (s), } 30.66 \text{ (s), } 29.90 \text{ (s)}; \\ \end{aligned}$

GC/MS (m/z): 327.01; HPLC (Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C) t₁ = 22.94 min, t₂ = 24.43 min.

 $\underbrace{6g: (S)-3-(1-(3-chlorophenyl)-2-nitroethyl)pentane-2,4-dione:^{[2]} ^{1}H NMR (400 MHz, CDCl_3): \delta 7.46 \\ (d, J = 7.8 Hz, 1H), 7.37 (s, 1H), 7.23 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), \\ 4.71-4.58 (m, 2H), 4.36 (d, J = 10.7 Hz, 1H), 4.23 (ddd, J = 10.7, J = 7.4, J = 4.8 \\ Hz, 1H), 2.32 (s, 3H), 2.03 (s, 3H).; ^{13}C{^{1}H} NMR (101 MHz, CDCl_3): \delta 201.54 (s), \\ 200.67 (s), 138.71 (s), 132.03 (s), 131.28 (s), 131.07 (s), 126.83 (s), 123.55 (s), \\ 77.96 (s), 70.58 (s), 42.52 (s), 30.73 (s), 30.02 (s); GC/MS (m/z): 327.01; HPLC$

(Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C) t₁ = 14.48 min, t₂ = 25.96

 $\underbrace{ \frac{6h:}{(S)-3-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)pentane-2,4-dione:}^{[3]} H NMR (400 MHz, CDCl_3): \delta 7.62 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 4.74-4.60 (m, 2H), 4.41 (d, J = 10.6 Hz, 1H), 4.38-4.30 (m, 1H), 2.34 (s, 3H), 2.02 (s, 3H); {}^{13}C{}^{1}H} NMR (101 MHz, CDCl_3): \delta 201.34 (s), 200.46 (s), 140.52 (s), 128.70 (s), 126.48 (s), 77.85 (s), 70.53 (s), 42.65 (s), 30.68 (s), 29.96 (s); GC/MS (m/z): 317.09;$

HPLC (Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 95/05, flow rate = 1.0 mL/min, 25 °C) $t_1 = 21.44 \text{ min}, t_2 = 36.17$

 $\underbrace{\underline{6i:}}_{CF_{3}} (S)-3-(2-nitro-1-(3-(trifluoromethyl)phenyl)ethyl)pentane-2,4-dione: \begin{bmatrix} 3 \end{bmatrix} \ ^{1}H \ NMR \ (400 \ MHz, CDCl_{3}): \ \delta \ 7.59 \ (d, \ J = 7.8 \ Hz, \ 1H), \ 7.54-7.45 \ (m, \ 2H), \ 7.42 \ (d, \ J = 7.7 \ Hz, \ 1H), \ 4.75-4.62 \ (m, \ 2H), \ 4.41 \ (d, \ J = 10.6 \ Hz, \ 1H), \ 4.38-4.29 \ (m, \ 1H), \ 2.33 \ (s, \ 3H), \ 2.02 \ (s, \ 3H); \ ^{13}C\{^{1}H\} \ NMR \ (101 \ MHz, \ CDCl_{3}): \ \delta \ 201.39 \ (s), \ 200.55 \ (s), \ 137.61 \ (s), \ 131.75 \ (s), \ 130.12 \ (s), \ 125.70 \ (q, \ J = 3.8 \ Hz), \ 124.91 \ (q, \ J = 3.8 \ Hz), \ 122.48 \ (s), \ 77.87 \ (s), \ 70.48 \ (s), \ 42.69 \ (s), \ 30.72 \ (s), \ 30.06 \ (s); \ GC/MS \ (m/z): \ 317.09; \ HPLC$

(Chiracel AS-H, detected at 215 nm, eluent: n-hexane/2-propanol = 95/05, flow rate = 1.0 mL/min, 25 °C) $t_1 = 19.42 \text{ min}, t_2 = 38.77$

 $\underbrace{\textit{6j:}}_{NO_2} (S)-3-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)pentane-2,4-dione: \begin{bmatrix} 4 \end{bmatrix} \ ^1H \ NMR \ (400 \ MHz, CDCl_3): \delta 8.20 \ (dt, J = 6.9, J = 2.2 \ Hz, 1H), 8.13 \ (d, J = 1.7 \ Hz, 1H), 7.63-7.52 \ (m, 2H), 4.77-4.64 \ (m, 2H), 4.45 \ (d, J = 10.4 \ Hz, 1H), 4.43-4.37 \ (m, 1H), 2.36 \ (s, 3H), 2.07 \ (s, 3H); \ ^{13}C\{^{1}H\} \ NMR \ (101 \ MHz, CDCl_3): \delta 201.07 \ (s), 200.23 \ (s), 148.84 \ (s), 138.76 \ (s), 134.74 \ (s), 130.64 \ (s), 123.82 \ (s), 122.94 \ (s), 77.70 \ (s), 70.31 \ (s), 42.48 \ (s), 30.80 \ (s), 30.29 \ (s); GC/MS \ (m/z): 294.09; HPLC \ (Chiracel OD-H, detected at the set of the se$

215 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, 25 °C) t₁ = 15.53 min, t₂ = 32.33.

 $\underbrace{bk:}_{(S)-3-(2-nitro-1-(p-tolyl)ethyl)pentane-2,4-dione:^{[1]} \ ^{1}H \ NMR \ (400 \ MHz, \ CDCl_{3}): \delta \ 7.12 \ (d, \ J = 7.9 \ Hz, \ 2H), \ 7.05 \ (d, \ J = 8.0 \ Hz, \ 2H), \ 4.65-4.54 \ (m, \ 2H), \ 4.35 \ (d, \ J = 10.9 \ Hz, \ 1H), \ 4.24-4.15 \ (m, \ 1H), \ 2.30 \ (s, \ 3H), \ 2.29 \ (s, \ 3H), \ 1.94 \ (s, \ 3H); \ ^{13}C\{^{1}H\} \ NMR \ (101 \ MHz, \ CDCl_{3}): \delta \ 202.13 \ (s), \ 138.60 \ (s), \ 133.05 \ (s), \ 130.23 \ (s), \ 128.01 \ (s), \ 78.60 \ (s), \ 71.06 \ (s), \ 42.69 \ (s), \ 30.63 \ (s), \ 29.68 \ (s), \ 21.28 \ (s); \ GC/MS \ (m/z): \ 263.12; \ HPLC$

Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C $t_1 = 8.53 \text{ min}, t_2 = 13.31 \text{ min}.$

33

 $\underbrace{\underline{6l:}}_{(S)-3-(2-nitro-1-(m-tolyl)ethyl)pentane-2,4-dione:}_{[5]} ^{1}H NMR (400 MHz, CDCl_3): \delta 7.23 (dd, J = 10.8, J = 5.1 Hz, 1H), 7.11 (d, J = 7.4 Hz, 1H), 6.99 (d, J = 6.6 Hz, 2H), 4.69-4.58 (m, 2H), 4.38 (d, J = 10.8 Hz, 1H), 4.22 (ddd, J = 10.9, J = 7.8, J = 4.8 Hz, 1H), 2.34 (s, 3H), 2.31 (s, 3H), 1.97 (s, 3H); ^{13}C{}^{1}H} NMR (101 MHz, CDCl_3): \delta 202.06 (s), 201.25 (s), 139.33 (s), 136.17 (s), 129.47 (d, J = 16.1 Hz), 128.94 (s), 125.02 (s), 78.48 (s), 71.01 (s), 42.98 (s), 30.63 (s), 29.71 (s), 21.61 (s); GC/MS (m/z): 263.12;$

HPLC(Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25 °C t_1 = 7.17 min, t_2 =8.14 min.)

110 100 f1 (ppm) эo

éo

propanol = 90/10, flow rate = 1.0 mL/min, 25 °C) t_1 =13.28 min, t_2 = 19.74 min.

 $\underbrace{6n: (S)-3-(1-(4-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione:^{[4]} ^{1}H NMR (400 MHz, CDCl_3): \delta \\ 7.27 (d, J = 8.3 Hz, 1H), 6.83 (dd, J = 8.3, 2.1 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), \\ 6.72 (s, 1H), 4.69-4.58 (m, 2H), 4.38 (d, J = 10.8 Hz, 1H), 4.23 (ddd, J = 10.9, J = \\ 7.5, J = 5.1 Hz, 1H), 3.79 (s, 3H), 2.31 (s, 3H), 1.99 (s, 3H); ^{13}C{^{1}H} NMR (101 MHz, CDCl_3): \delta 202.00 (s), 201.25 (s), 160.29 (s), 137.82 (s), 130.60 (s), 120.14 (s), \\ 114.37 (s), 113.80 (s), 78.36 (s), 70.82 (d, J = 5.5 Hz), 55.46 (s), 43.00 (s), 30.68 (s), \\ \end{aligned}$

29.87 (s); GC/MS (m/z): 279.11; HPLC (Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 99/01, flow rate = 1.0 mL/min, 25 °C) $t_1 = 15.81 \text{ min}, t_2 = 20.45 \text{min}.$

 $\underbrace{ 60: (S)-3-(1-(4-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione: } \begin{bmatrix} 21 & 1 \\ 1 &$

HPLC (Chiracel AD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 99/01, flow rate = 1.0 mL/min, 25 °C) $t_1 = 11.55 \text{ min}, t_2 = 12.06 \text{ min}.$

REFERENCES

- [1] X. M. Xu, T. Y. Cheng, X. C. Liu, J. Y. Xu, R. H. Jin, G. H. Liu, ACS Catal. 2014, 4, 2137–2142.
- [2] Y. F. Wang, R. X. Chen, K. Wang, B. B. Zhang, Z. B. Li, D. Q. Xu, Green Chem., 2012, 14, 893–895.
- [3] W.Yao, M. Chen, X. Y. Liu, R. Jiang, S. Y. Zhang, W. P. Chen, *Catal. Sci. Technol.*, 2014, 4,1726–1729.
- [4] X. C. Ren, C. Y. He, Y. L. Feng, Y. H. Chai, W. Yao, W. P. Chen, S. Y. Zhang, Org. Biomol. Chem., 2015, 13,5054–5060.
- [5] N. Horitsugi, K. Kojima, K.Yasui, Y. Sohtome, K. Nagasawa, Asian J. Org.Chem., 2014, 3, 445-448.