Supporting Information

Hägg Carbide Surfaces Induced Pt Morphological Changes:

A Theoretical Insight

Yurong He,^{a,b,c} Peng Zhao,^{a,b,c} Wenping Guo,^b Yong Yang,^{a,b} Chun-Fang Huo,^{b*} Yong-Wang

Li,^{a,b*} Xiao-Dong Wen,^{a,b*}

a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy

of Sciences, Taiyuan, 030001, China;

b) National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District,

Beijing, 101400, China;

c) University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China.

Corresponding authors: Chun-Fang Huo (huochunfang@synfuelschina.com.cn); Yong-Wang Li (ywl@sxicc.ac.cn) and Xiao-Dong Wen (wxd@sxicc.ac.cn)

Table of content

Table S1. The comparison of average aggregation energies of the gas phase Pt_n isomers calculated at Monkhorst-Pack and Gamma points.

Fig. S1 Various structures and adsorption energies for Pt_n (n = 1–4) on the Fe₅C₂(100) surface (adsorption energy in eV)

Fig. S2 Various structures and adsorption energies for Pt_n (n = 5, 6) on the Fe₅C₂(100) surface (adsorption energy in eV)

Fig. S3 Various structures and adsorption energies for Pt_n (n = 7, 8) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Fig. S4 Various structures and adsorption energies for Pt_9 on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Fig. S5 Various structures and adsorption energies for Pt_n (n = 10, 11) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Fig. S6 Various structures and adsorption energies for Pt_n (n = 12, 16) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Fig. S7 Various structures and adsorption energies for Pt_n (n = 1–3) on the Fe₅C₂(111) surface (adsorption energy in eV)

Fig. S8 Various structures and adsorption energies for Pt_4 on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S9 Various structures and adsorption energies for Pt_5 on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S10 Various structures and adsorption energies for Pt_n (n = 6, 7) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S11 Various structures and adsorption energies for Pt_n (n = 8–10) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S12 Various structures and adsorption energies for Pt_n (n =11, 12) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S13 The snapshot of initial and final structures at 20ps in AIMD calculation of Pt_{12} cluster deposited on the $Fe_5C_2(100)$ and (111) surfaces.

Fig. S14 The snapshot of initial and final structures at 20ps in AIMD calculation of Pt_8 cluster deposited on the $Fe_5C_2(100)$ and (111) surfaces.

Pt _{gas}	E _{agg}		
	Gamma	M-P	ΔE_{agg}
Pt ₂	-1.9517	-1.9514	-0.0003
Pt ₃ -1	-2.4877	-2.4954	0.0077
Pt ₃ -2	-2.3250	-2.3252	0.0002
Pt ₄ -1	-2.7967	-2.7964	-0.0003
Pt ₄ -2	-2.7722	-2.7731	0.0008
Pt5-1	-3.0570	-3.0567	-0.0003
Pt ₅ -2	-3.0239	-3.0230	-0.0010
Pt ₅ -3	-3.0084	-3.0082	-0.0003
Pt ₆ -1	-3.3090	-3.3080	-0.0011
Pt ₆ -2	-3.1979	-3.1976	-0.0003
Pt ₆ -3	-3.1654	-3.1652	-0.0003
Pt ₆ -4	-3.1598	-3.1595	-0.0004
Pt ₆ -5	-3.0563	-3.0558	-0.0005
Pt ₇ -1	-3.3691	-3.3688	-0.0003
Pt ₇ -2	-3.3395	-3.3391	-0.0004
Pt ₇ -3	-3.3164	-3.3161	-0.0003
Pt ₇ -4	-3.3100	-3.3100	0.0000
Pt ₇ -5	-3.2867	-3.2863	-0.0003
Pt ₇ -6	-3.2693	-3.2687	-0.0006
Pt ₇ -7	-3.2501	-3.2495	-0.0006
Pt ₇ -8	-3.2453	-3.2449	-0.0005
Pt ₈ -1	-3.4935	-3.4932	-0.0003
Pt ₈ -2	-3.4684	-3.4681	-0.0003
Pt ₈ -3	-3.4572	-3.4569	-0.0003
Pt_8-4	-3.4365	-3.4357	-0.0009
Pt ₈ -5	-3.4157	-3.4151	-0.0006
Pt ₈ -6	-3.4045	-3.4045	0.0000
Pt ₈ -7	-3.4008	-3.4008	-0.0001
Pt9-1	-3.6522	-3.6540	0.0018
Pt9-2	-3.6460	-3.6460	0.0000
Pt ₉ -3	-3.6271	-3.6268	-0.0003
Pt ₉ -4	-3.5734	-3.5733	-0.0001
Pt ₉ -5	-3.5663	-3.5659	-0.0004
Pt ₉ -6	-3.5439	-3.5467	0.0029
Pt ₉ -7	-3.4808	-3.4803	-0.0006
Pt ₁₀ -1	-3.8008	-3.8005	-0.0003
Pt ₁₀ -2	-3.6749	-3.6744	-0.0005
Pt ₁₀ -3	-3.6231	-3.6236	0.0005

Table S1. The comparison of average aggregation energies of the gas phase Ptn isomers

 calculated at Monkhorst-Pack and Gamma points.

Pt ₁₀ -4	-3.5999	-3.5994	-0.0005
Pt ₁₀ -5	-3.5950	-3.5947	-0.0004
Pt ₁₀ -6	-3.5783	-3.5779	-0.0003
Pt ₁₁ -1	-3.7962	-3.7959	-0.0003
Pt ₁₁ -2	-3.7713	-3.7708	-0.0005
Pt ₁₁ -3	-3.7668	-3.7662	-0.0006
Pt ₁₁ -4	-3.6705	-3.6702	-0.0003
Pt ₁₂ -1	-3.8620	-3.8615	-0.0006
Pt ₁₂ -2	-3.8543	-3.8538	-0.0006
Pt ₁₂ -3	-3.8316	-3.8313	-0.0003
Pt ₁₂ -4	-3.8131	-3.8125	-0.0005
Pt ₁₂ -5	-3.8103	-3.8098	-0.0005
Pt ₁₂ -6	-3.7808	-3.7802	-0.0006
Pt ₁₂ -7	-3.7749	-3.7747	-0.0003
Pt ₁₂ -8	-3.7490	-3.7487	-0.0003

Figure S1. Various structures and adsorption energies for Pt_n (n = 1–4) on the Fe_5C_2 (100) surface (adsorption energy in eV)

Fe₅C₂ (100)-Pt₅

Figure S2. Various structures and adsorption energies for Pt_n (n = 5, 6) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Figure S3. Various structures and adsorption energies for Pt_n (n = 7, 8) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Fe_5C_2 (100)-Pt₉

Figure S4. Various structures and adsorption energies for Pt_9 on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Figure S5. Various structures and adsorption energies for Pt_n (n = 10, 11) on the Fe_5C_2 (100) surface (adsorption energy in eV)

Figure S6. Various structures and adsorption energies for Pt_n (n = 12, 16) on the $Fe_5C_2(100)$ surface (adsorption energy in eV)

Figure S7. Various structures and adsorption energies for Pt_n (n = 1–3) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fe₅C₂ (111)-Pt₄

Figure S8. Various structures and adsorption energies for Pt_4 on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fe₅C₂ (111)-Pt₅

Figure S9. Various structures and adsorption energies for Pt_5 on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fe₅C₂ (111)-Pt₆

Figure S10. Various structures and adsorption energies for Pt_n (n = 6, 7) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Figure S11. Various structures and adsorption energies for Pt_n (n = 8–10) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fe₅C₂ (111)-Pt₁₁

Figure S12. Various structures and adsorption energies for Pt_n (n =11, 12) on the $Fe_5C_2(111)$ surface (adsorption energy in eV)

Fig. S13 The snapshot of initial and final structures at 20ps in AIMD calculation of Pt_{12} cluster deposited on the $Fe_5C_2(100)$ and (111) surfaces. The Pt atoms are in orange, the Fe atoms in blue and the C atoms in black.

Fig. S14The snapshot of initial and final structures at 20ps in AIMD calculation of Pt_8 cluster deposited on the $Fe_5C_2(100)$ and (111) surfaces. The Pt atoms are in orange, the Fe atoms in blue and the C atoms in black.