Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information

NiFe₂O₄ as an Active Component of Platinum Group Metal Free Automotive Three-way Catalyst

Kakuya Ueda,^a Cheen Aik Ang,^a Yoshihiro Ito,^a Junya Ohyama^{a,b} and Atsushi Satsuma^{a,b}*

^a Graduate school of engineering, Nagoya University, Nagoya 464-8603, Japan
^b Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8530, Japan
*E-mail: satsuma@apchem.nagoya-u.ac.jp

Raman Spectroscopy:

Fig. S1 Raman spectra of NiFe₂O₄ (reCP), NiFe₂O₄ (SSR), α -Fe₂O₃ and NiO

Fig. S1 shows the Raman spectra of NiFe₂O₄ prepared by a reverse strike co-precipitation (reCP) method and a conventional solid state reaction (SSR)¹ method, α -Fe₂O₃ and NiO. The procedure of a solid state reaction method is as follows: α -Fe₂O₃ (Purity 98%, Kishida Chemical Co., Ltd, Japan), NiO (Purity 98%, Kishida Chemical Co., Ltd, Japan) and acetone were ball-milled for 24 h in order to get a homogeneous slurry. The slurry was filtered, washed and dried overnight at 80 °C. The powder was calcined at 1000 °C for 10 h. NiFe₂O₄ (reCP) show the bands located at 344, 493, 575 and 699 cm⁻¹ are attributable to characteristic of spinel structure.² A_{1g} mode in the 620-720 cm⁻¹ region corresponds to the symmetric stretching vibration of oxygen with respect to the metal ion in tetrahedral unit (MO₄). The presence of shoulder-like feature of A_{1g} mode results from iron and nickel ion occupied the tetrahedral site in the spinel lattice.³ The Raman spectra of NiFe₂O₄ (reCP) is similar to that of NiFe₂O₄ (SSR) and the bands attributable to α -Fe₂O₃ and NiO (e.g., 299 cm⁻¹ and 538 cm⁻¹) are not observed. Therefore, it is clear that NiFe₂O₄ (reCP) has a single spinel phase, which is in accordance with XRD results.

Specific activity of Fe-Ni mixed oxides:

Fig. S2 Specific activity for NO reduction (350 °C), C₃H₆ oxidation and CO oxidation (300 °C) under TWC conditions over Fe-Ni mixed oxides

Fig. S2 shows the specific activity, reaction rate per unit surface area, for NO reduction, C₃H₆ oxidation and CO oxidation under TWC conditions over different Fe-Ni mixed oxides. NO reduction and C₃H₆ oxidation showed a volcano-relationship against Fe/Ni ratio. In contrast, for CO oxidation, NiO exhibited the highest activity and Fe1Ni7 exhibited the second highest activity.

Specific activity of NiFe₂O₄ prepared by solid state reaction

Table S1 Specific NO reductio	on rate propared by colid sta	to reaction (SSP) and ro	warsa strika sa prasinitatia	(roCD)
Table 31 Specific NO reductio	in rate prepared by solid sta	ite reaction (SSR) and re		I (IECF)

Catalyst	Specific NO reduction rate ^a / nmols ⁻¹ m ⁻²	NO conversion ^a /%	Surface area / m²g-1
NiFe ₂ O ₄ (SSR)	32.2 ^b	2.8 ^b	2.22
NiFe ₂ O ₄ (reCP)	33.7 ^c	54.6 ^b	41.3

^a at 400 °C ^b 17.5 mg ^c 4.38 mg

Table S1 shows the effect of preparation method on the three-way catalytic activity of NiFe₂O₄. NiFe₂O₄ (SSR) was prepared by solid state reaction. The NO conversion over NiFe₂O₄ (SSR) was less than 1/20 of that of NiFe₂O₄ (reCP). This is the due to the significant decrease in surface area from 54.6 to 2.8 m²g⁻¹. However, the NO reduction rate per unit surface area was almost the same on these catalysts. These results indicate that the formation of NiFe₂O₄ is the essential factor for high NO catalytic activity.

Tolerance to H₂O and CO₂

Fig. S3 NO conversion over (A)NiFe₂O₄ (B)Fe-Ni/CeO₂⁴ under TWC conditions (a)without H₂O and CO₂ (b)with 10% H₂O (c)with 7.7% CO₂ (at 500 °C).

Fig. S3 shows NO conversion under TWC conditions in the presence of large amounts of H_2O and CO_2 over NiFe₂O₄ (reCP) and Fe-Ni/CeO₂⁴ at 500 °C. The NO reduction activity of NiFe₂O₄ was unchanged in the presence of 7.7% CO₂, but it decreased in the presence of 10% water vapor (Fig. S3(A)). Although the stability of pure NiFe₂O₄ in the presence of 10% water vapor is not good, the authors have reported⁴ that the use of CeO₂ support improves the stability in the presence of water shown in the Fig. S3(B).

Fig. S4 Durability test over NiFe₂O₄ (reCP) at 500 °C.

Fig. S4 shows time-on-stream of NO, C_3H_6 and CO conversions at 500 °C over NiFe₂O₄ (reCP). The catalytic activity was stable for 10 h on NiFe₂O₄.

TWC catalytic activity as a function of air/fuel ratio (λ)

Fig. S5 Catalytic conversions of NO C_3H_6 and CO as a function of air/fuel ratio (λ) over NiFe₂O₄ (reCP) at 500 °C.

Fig. S5 shows TWC activity dependence on air/fuel (A/F) ratio (λ). The λ value, which represents the excess oxygen ratio was defined as follows:

$$\lambda = \frac{[NO] + 2[O_2]}{9[C_2H_6] + [CO]}$$

 λ was controlled by adjusting O₂ concentration. The conversions of NO, C₃H₆ and CO showed a similar trend on A/F ratio with Platinum-group metal catalysts, i.e. NO conversion was nearly 100% in the rich conditions, while those of C₃H₆ and CO decreased in the rich conditions because of insufficient concentration of oxygen. In lean conditions, the conversions of C₃H₆ and CO were around 100%, while the conversion of NO decreased significantly. When the A/F ratio varied from lean to rich conditions, NiFe₂O₄ showed low activity for NO reduction than that of A/F ratio varied from rich to lean conditions.

References:

- 1. A. Kumar, P. Sharma, D. Varshney, *Ceram. Int.*, 2014, **40**, 12855-12860.
- 2. P. R. Graves, C. Johnston and J. J. Campaniello, Mat. Res. Bull., 1988, 23, 1651-1660.
- F. Nakagomi, S. W. da Silva, V. K. Garg, A. C. Oliveira, P. C. Morais and A. Franco Jr., J. Solid State Chem., 2009, 182, 2423-2429.
- 4. A. Satsuma, K. Ueda, Y. Ito, C. A. Ang and J. Ohyama, Chem. Lett., 2015, 44, 703.