Electronic Supplementary Information for

Alkali α -MnO₂/Na_xMnO₂ collaboratively catalyzed ammoxidation-Pinner tandem reaction of aldehydes

Xiuquan Jia, Jiping Ma,* Min Wang, Xiaofang Li, Jin Gao, and Jie Xu*

Contents:

- 1. Additional Results (pp. 3-16)
- 2. GC, MS and NMR Traces (pp. 17-25)

1. Additional Results

Preparation of \alpha-MnO₂. α -MnO₂ was prepared according to the literature procedure (see below).^[S1] A 100 mL aqueous solution containing 40 mmol KMnO₄ was added into another 100 mL aqueous solution containing 60 mmol Mn(NO₃)₂. After stirring at room temperature for 4 h, the resulting solid was collected by filtration, washed repeatedly with distilled water, and finally dried overnight in air at 60 °C and then calcined in air at 250 °C for 4 h.

Preparation of β-MnO₂. β-MnO₂ was prepared according to the literature procedure (see below).^[S2] A 60 mL aqueous solution containing stoichiometric amount of MnSO₄ (18 mmol) and KMnO₄ (3 mmol) was loaded in a 100 mL Teflon-lined autoclave, which was sealed and maintained at 140 °C for 12 h. After naturally cooling to room temperature, the resulting solid was collected by centrifugation, washed repeatedly with distilled water, and finally dried overnight in air at 80 °C.

Preparation of δ-MnO₂. δ-MnO₂ was prepared according to the literature procedure (see below).^[S3] An aqueous solution (A) was prepared by dissolving 0.04 mol of KMnO₄ and 1.2 mol of NaOH in 400 mL of water. Afterward, another aqueous solution (B) was prepared by dissolving 0.112 mol of MnCl₂·4H₂O in 400 mL of water. Solution B was added dropwise to solution A with vigorous stirring in an ice bath. The resulting precipitate was statically aged at room temperature for 1 day and then washed and dried at 90 °C.

Preparation of OMS-2. OMS-2 was prepared according to the literature

procedure (see below).^[S4] KMnO₄ (5.89 g) in water (100 mL) was added to a solution of MnSO₄·H₂O (8.8 g) in water (30 mL) and conc. HNO₃ (3 mL). The solution was refluxed at 100 °C for 24 h. Then, the dark brown solid was filtered off, washed with a large amount of water (ca. 3 L), and dried at 120 °C to afford 8.2 g of OMS-2.

Preparation of Na_xMnO₂. Na_xMnO₂ was prepared according to the literature procedure with some modification (see below).^[S5] A mixture of 10 mmol Na₂CO₃ and 30 mmol MnCO₃ was heated at 1000 $^{\circ}$ C for 15 h, followed by naturally cooling to room temperature.

- [S1] E. Schleitzer (Ed.), Gmelin Handbook of Inorganic Chemistry 8th Edition (Manganese), Verlag Chemie GmbH, Weinheim/Bergstrasse, 1973.
- [S2] F. Y. Cheng, T.R. Zhang, Y. Zhang, J. Du, X. P. Han, J. Chen, Angew. Chem. Int. Ed. 2013, 52, 2474.
- [S3] O. Ghodbane, J.-L. Pascal, and F. Favier, ACS Appl. Mater. Interfaces. 2009, 1, 1130.
- [S4] R. N. DeGuzman, Y.-F. Shen, E. J. Neth, S. L. Suib, C.-L. O'Young, S. Levine, J.M. Newsam, *Chem. Mater.* 1994, 6, 815.
- [S5] R. Stoyanova, D. Carlier, M. Sendova-Vassileva, M. Yoncheva, E. Zhecheva, D. Nihtianova, C. Delmas, J. Solid State Chem. 2010, 183, 1372.

Figure S1 XRD patterns of α -MnO₂.

Figure S2 XRD patterns of β -MnO₂.

Figure S3 XRD patterns of γ -MnO₂.

Figure S4 XRD patterns of δ -MnO₂.

Figure S5 XRD patterns of (a) fresh and (b) used α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.

Figure S6 XRD patterns of Na_xMnO₂.

Figure S7 HRTEM image of α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.

Figure S8 XRD pattern of manganese oxide calcined at 500 ^OC with NaOH/Mn molar ratio of 1.2 and substituting NaMnO4 for KMnO4

Figure S9 TEM images of (a) fresh and (b) used α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.

Figure S10 Catalytic conversion of furfural to methyl furan-2-carboximidate over different metal oxides. Reaction conditions: 0.5 mmol furfural, 0.1 g catalyst, 120 μ L aq. NH₃ (3 equiv.), 5 mL MeOH, 0.5 MPa O₂, 30 °C, 12 h.

	0.5 M	Pa O ₂ , 3 equiv. aq. N 5 mL MeOH 0.1 g cat., 12 h	H ₃ ,	=N + 0 NH 3	+ 0 0 NH ₂
Entry	$T(^{0}C)$	Conv.		Yield (%	6)
Еппл	I (C)	(%)	2	3	4
1	30	> 99	11	89	-
2	90	> 99	3	24	32
3	120	> 99	-	2	62

Table S1. Catalytic conversion of furfural at different temperatures.^{*a*}

^{*a*}Reaction conditions: 0.5 mmol furfural, 0.1 g α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, 120 μ L aq. NH₃ (3 equiv.), 5 mL MeOH, 0.5 MPa O₂, 12 h.

Element	Weight%	Atomic%
0	42.9	70.7
Na	1.49	1.71
Κ	4.69	3.17
Mn	50.9	24.4

Table S2. ICP elemental analysis of α -MnO₂/Na_xMnO₂.

Table S3. EDS elemental analysis of α -MnO₂/Na_xMnO₂.

Element	Weight%	Atomic%
0	39.75	67.29
Na	2.67	3.15
Κ	5.83	4.04
Mn	51.75	25.52

Table S4. ICP elemental analysis of manganese oxide prepared with KMnO₄ + KOH.

Element	Weight%	Atomic%
0	33.3	63.7
Κ	7.38	3.30
Mn	59.3	33.0

Table S5. ICP elemental analysis of manganese oxide prepared with NaMnO₄+

NaOH.

Element	Weight%	Atomic%
0	52.6	75.2
Na	8.47	8.46
Mn	39.0	16.3

Scheme S1. Catalytic conversion of 5- bromofurfural over OMS-2.

Figure S11. α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C oxidized synthesis of methyl furan-2-carboximidate from furfural. Reaction conditions: 0.5 mmol furfural, 120 µL aq. NH₃ (3 equiv.), 5 mL MeOH, 0.5 MPa N₂, 30 °C, 12 h. Note: The molar mass of α -MnO₂/Na_xMnO₂ was approximate to that of MnO₂.

Figure S12. XPS spectra of (a) fresh α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, (b) α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C was treated with furfural and ammonia in MeOH at 30 °C under N₂ atmosphere for 48 h, (c) α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C in (b) was treated at 30 °C under O₂ atmosphere for 12 h.

Figure S13. EPR spectra of (a) fresh α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, (b) α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C was treated with furfural and ammonia in MeOH at 30 °C under N₂ atmosphere for 48 h, (c) α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C in (b) was treated at 30 °C under O₂ atmosphere for 12 h.

Figure S14. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.

Figure S15. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 400 °C.

Figure S16. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 420 °C.

Figure S17. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 450 °C.

Figure S18. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α -MnO₂/Na_xMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 500 °C.

Figure S19. Relationship of $ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over Na_xMnO_2 .

2. GC, MS and NMR Traces

Figure S20 GC spectrum of products from furfural (Figure 7 0.5 h in the main text).

MS: m/z (%):95 (100) [M+], 64 (13), 44 (15), 39 (48), 32 (52)

Figure S21 Mass spectrum of aldimine.

Figure S22 GC spectrum of Table S1, entry 2.

MS: m/z (%):111 (100) [M+], 95 (96), 44 (14), 39 (27), 32 (7)

Figure S23 Mass spectrum of 4.

Figure S24 GC spectrum of Table 1, entry 3 in the main text.

MS: m/z (%): 93 (100) [M+], 64 (47), 38 (23)

Figure S25 Mass spectrum of 2.

MS: m/z (%): 125 (41) [M+], 94 (100), 81 (41), 67 (57), 39 (41)

Figure S26 Mass spectrum of 3.

Figure S27 ¹H NMR (DMSO-d₆) of isolated **methyl furan-2-carbox Imidate**.

Figure S28 ¹³C NMR (DMSO-d₆) of isolated **methyl furan-2-carbox imidate**.

Figure S29 ¹H NMR (DMSO-d₆) of isolated **methyl 5-methylfuran-2-carbox Imidate** (Fig.6 entry 1).

Figure S30 ¹³C NMR (DMSO-d₆) of isolated **methyl 5-methylfuran-2-carbox imidate**.

Figure S31 ¹H NMR (DMSO-d₆) of isolated **methyl 5-ethoxymethylfuran** -2-carboximidate (Fig.6 entry 4).

Figure S32 ¹³C NMR (DMSO-d₆) of isolated **methyl 5-ethoxymethylfuran** -2-carboximidate.

Figure S33 ¹H NMR (DMSO-d₆) of isolated **methyl 5-bromofuran-2-carbox-Imidate** (Fig.6 entry 5).

Figure S34 ¹³C NMR (DMSO-d₆) of isolated methyl 5-bromofuran-2-carbox-

imidate.

Figure S35 ¹H NMR (DMSO-d₆) of isolated **methyl 5-phenylfuran-2-carbox-Imidate** (Fig.6 entry 7).

Figure S36 ¹³C NMR (DMSO-d₆) of isolated **methyl 5-phenylfuran-2-carboximidate**.

Figure S37 ¹H NMR (DMSO-d₆) of isolated **methyl benzofuran-2-carboximidate** (Fig.6 entry 8).

Figure S38¹³C NMR (DMSO-d₆) of isolated methyl benzofuran-2-carboximidate.