Electronic Supplementary Information

Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins *via* 2-methyl-2-butene cracking

Sharon Mitchell, Marilyne Boltz, Jiaxu Liu, and Javier Pérez-Ramírez*

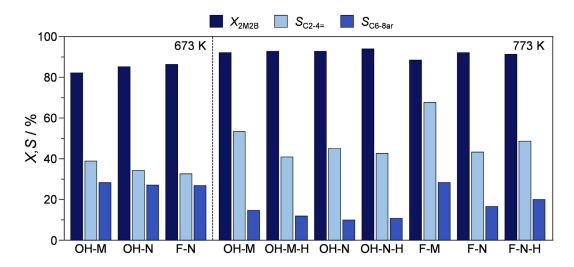
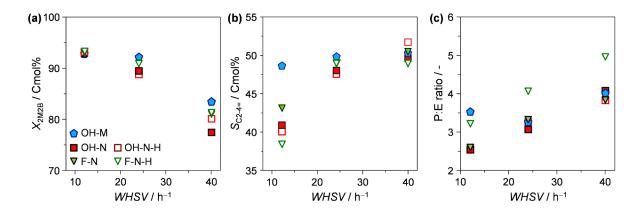
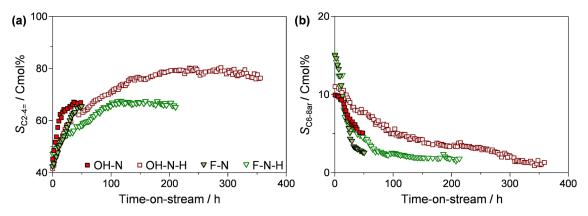

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH 8093, Zurich, Switzerland.

Table S1. Average product selectivity evidenced over the zeolite catalysts during a single catalytic cycle in the conversion of methanol to olefins. Conditions: T = 723 K, P = 1 bar, $WHSV = 6 \text{ g}_{MeOH} \text{ g}_{Zeolite}^{-1} \text{ h}^{-1}$.


Sample	Lifetime ^a (h)	$S_{\text{C2=}}^{b}$ (Cmol%)	$S_{\text{C3}=}^{b}$ (Cmol%)	$S_{\text{C4=}}^{b} $ (Cmol%)	STY^{c} $(g_{C2-4}=g_{zeolite}^{-1}h^{-1})$	S _{C1-3alk} ^b (Cmol%)	S _{C4-7alk} ^b (Cmol%)	S _{C6-8ar} ^b (Cmol%)
ОН-М	18	10	27	17	3.28	5	32	10
ОН-М-Н	39	14	25	9	2.64	4	31	9
OH-N	27	8	20	12	2.38	7	36	15
ОН-N-Н	54	8	20	10	2.25	4	37	10
F-M	19	10	21	12	2.59	6	26	15
F-N	25	9	22	13	2.64	4	27	13
F-N-H	42	7	24	11	2.49	3	33	9

^a Time on stream during which $X_{\text{MeOH}} > 80\%$. ^b Selectivity to ethene (S_{C2}), propene (S_{C3}), butenes (S_{C4}), light alkanes ($S_{\text{C1-3alk}}$), gasoline-range alkanes ($S_{\text{C4-7alk}}$), and to benzene, toluene, and xylene aromatics ($S_{\text{C6-8ar}}$). ^c Space-time yield of C2-4 olefins.


^{*}E-mail: jpr@chem.ethz.ch

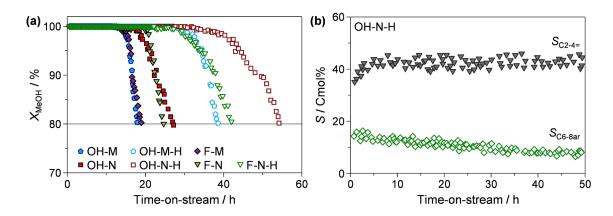

Figure S1. Conversion and selectivity over selected ZSM-5 catalysts in 2M2B cracking at different temperatures. Conditions: t = 2 h, P = 1 bar, $WHSV = 12 \text{ g}_{2M2B} \text{ h}^{-1} \text{ g}_{catalyst}^{-1}$.

Figure S2. (a) Conversion, (b) olefin selectivity, and (c) the propylene:ethylene ratio in 2M2B cracking over selected ZSM-5 catalysts *versus* the weight hourly space velocity. Conditions: t = 2 h, T = 773 K, P = 1 bar.

Figure S3. Selectivity to (a) light olefins ($S_{C2-4=}$) or (b) aromatics (S_{C6-8ar}) *versus* time-on-stream in 2M2B cracking over the nanosized zeolites and their desilicated analogues. Conditions: T = 773 K, P = 1 bar, $WHSV = 12 \text{ g}_{2M2B} \text{ g}_{zeolite}^{-1} \text{ h}^{-1}$.

Figure S4. (a) Conversion and (b) selectivity to light olefins ($S_{C2-4=}$) or aromatics (S_{C6-8ar}) *versus* time-on-stream in the conversion of methanol to olefins over the ZSM-5 zeolites studied. The grey line indicates the degree of conversion at which a single catalytic cycle was defined. Conditions: T = 723 K, P = 1 bar, $WHSV = 6 \text{ g}_{MeOH} \text{ g}_{Zeolite}^{-1} \text{ h}^{-1}$.