Phenol hydrodeoxygenation: Effect of support and Re promoter on the reactivity of Co catalysts

I.T. Ghampson^{a,*}, C. Sepúlveda^b, A.B. Dongil^b, G. Pecchi^b, R. García^b, J.L.G. Fierro^c, N. Escalona^{a,d**}

^aDepartamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.

^bUniversidad de Concepción, Facultad de Ciencias Químicas, Casilla 160c, Concepción, Chile

^cInstituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain

^dDepartamento de Fisicoquímica, Facultad de Químicas, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile

*Corresponding authors:

* Dr. I. Tyrone Ghampson, e-mail: isghampson@uc.cl

**Dr. Nestor Escalona, e-mail: <u>neescalona@ing.puc.cl</u>

Substrate(s)	Conv.	Products distribution (%)					
	(%)	\bigcirc			\bigcirc	~~~~	Alkylation products
	10	100	-	-	-	-	-
*	100	44	1	48	-	1	-
OH	100	93		7			
OH	100	76	1	9	5	-	9
ОН	33						
ОН	3.3	95	5	_	_	_	_
	100		5				
	26.1	F1				2	46
	89.2	51	-	-	-	5	40

Table S1 Conversion of phenol intermediates over Co/Al $_2O_3$ catalyst at 300 °C, 3 MPa H $_2$, 4 h

^{*} Products from hydrocracking of cyclohexane accounted for 5% of the products.

Figure S1. BJH pore size distributions of calcined (a) Al_2O_3 -supported, (b) SiO_2 - Al_2O_3 -supported, (c) TiO_2 -supported, and (d) ZrO_2 -supported catalysts

Figure S2. Re 4f core level spectra of reduced-passivated supported Re-Co catalysts. Reduction conditions to remove the passivation layer: 50 mL min⁻¹ H_2 , 300 °C, 1 h

Figure S3. Variation of the conversion of cyclohexanol and the yield of products with time over Co/Al_2O_3 catalyst. Reaction conditions: cyclohexanol (1.98 mL, 19 mmol), catalyst (100 mg), dodecane (80 mL), 300 °C, 3 MPa H₂.

Figure S4. Variation of the conversion of phenol and cyclohexanol, and the yield of products with time over Co/Al_2O_3 catalyst. Reaction conditions: phenol (1.8 g, 19.1 mmol), catalyst (200 mg), dodecane (80 mL), 300 °C, 3 MPa H₂.

Figure S5. (a) Time-course of the conversion of phenol, and (b) Products selectivity calculated at 10% phenol conversion over unpassivated Co/Al_2O_3 catalyst. Reaction conditions: phenol (1.8 g, 19.1 mmol), catalyst (200 mg), dodecane (80 mL), 300 °C, 3 MPa H₂.

Figure S6. (a) Time-course of the conversion of phenol, and (b) products selectivity calculated at 10% phenol conversion over Co/SiO₂ catalyst. Reaction conditions: phenol (1.8 g, 19.1 mmol), catalyst (200 mg), dodecane (80 mL), 300 °C, 3 MPa H₂.

Figure S7. Variation of the conversion of phenol and the yield of products with time over Re/SiO₂- Al_2O_3 catalyst. Reaction conditions: phenol (1.8 g, 19.1 mmol), catalyst (200 mg), dodecane (80 mL), 300 °C, 3 MPa H₂.