Alkaline versatile peroxidase by directed evolution

David Gonzalez-Perez ${ }^{a}$, Ivan Mateljak ${ }^{a}$, Eva Garcia-Ruiz ${ }^{b}$, Francisco J. Ruiz-Dueñas ${ }^{c}$, Angel T. Martinez c and Miguel Alcalde ${ }^{a *}$
${ }^{a}$ Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain.
${ }^{b}$ Department of Chemical and Biomolecular Engineering, University of Illinois at UrbanaChampaign, Urbana, IL 61801, USA.

${ }^{c}$ Center for Biological Investigations, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
*Corresponding author: Miguel Alcalde, Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain. Phone: +34 915854806; Fax: +34 915854760; malcalde@icp.csic.es.

Contents:
Fig. S1. Molecular Docking for ABTS at the Mn^{2+} site
Fig. S2. MSA of representative ligninolytic peroxidases.
Supplemental experimental procedures

Fig. S1 Molecular Docking for ABTS at the Mn^{2+} site.
The protein is shown in the surface mode, the heme cofactor and ABTS are highlighted as stick models (CPK colors). The hydrogen bond between the SO ${ }^{3-}$ group of ABTS and Ser182 is represented as a yellow dash. The PDB file used for molecular docking was 3FKG. (A) Front view. (B) Side view.

Multiple structural alignment (MSA)

AURDE-GP11
PHLRA-MnP2
PHACH-MnP1
BJEAD-LiP
PHLRA-LiP3
PHACH-LiPH8
PLEOS-MnP4
BJEAD-VP
BB8-PLEER-VP
PLEOS-MnP5
PLEOS-VP3
Consensus
AURDE-GP11
PHLRA-MnP2
PHACH-MnP1
BJEAD-LiP
PHLRA-LiP3
PHACH-LiPH8
PLEOS-MnP4
BJEAD-VP
BB8-PLEER-VP
PLEOS-MnP5
PLEOS-VP3
Consensus

E37K H39R
----RPAASVCADGVTTVNNPQCCFWANVRDRFINEIFL-GVCQENVHSLVRIAFHDAIG -------KTTCSNG-VVVPDAVCCDFVPLASALQSEVLM-GDCGEDAHELVRLIFHDAIA
--------AVCPDG-TRVSHAACCAFIPLAQDLQETIFQ-NECGEDAHEVIRLTFHDAIA ---AIIKRVACPDGRHTAINAACCNLFTVRDDIQRNMFDGGKCNDIAHQALRLTFHDAVA --ASVTRRATCPDG-TQLMNAECCALLAVRDDLQNNMFN-NECGDwAHEALRLTFHDAIA --------ATCSNG-KTVGDASCCAWFDVLDDIQQNLFHGGQCGA国AESIRLVFHDS IA ---VPAHRAKCSKG-RTASNDACCVWFDVLDDIQENLFDGGECGEMVFESLRLTFHDAIG ---AITRRVACPDGVNTATNAACCALFAVRDDIQQNLFDGGECGE国HESLRLTFHDAIG --------ATCDDG-RTTANAACCILFPILDDIQENLFDGAQCGEKVRESLRLTFHDAIG -VSLPQKRATCAGG-QVTANAACCVLFPLMEDLQKNLFDDGACGEDAHEALRLTFHDAIG -VTLPQKRATCAGG-QVTANAACCVLFPILEDLQQNLFDGGECGEMVESLRLTFHDAIG

FSLTD----PSKGGGADGSIIMFGDTELNFHANEGIDFITAFLQPFADTVG-VTYGDAIQ ISQSMG---PSAGGGADGSMLIFPTVEPAFFPNLGIADSVNNLIPFLSQFPTISAGDLVQ ISRSQG---PKAGGGADGSMLLFPTVEPNFSANNGIDDSVNNLIPFMQKHNTISAADLVQ FSPALEAEGKFGGNGADGSIITFGNIETNFHPNIGLDEIVEIEKPFIARHN-MTPGDFLH ISPAMEATGQFGGGGADGS IMIFSDIETKFHPNIGLDEVVESFRPFQQRSG-MGVADFIQ ISPAMEAQGKFGGGGADGSIMIFDDIETAFHPNIGLDEIVKLQKPFVQKHG-VTPGDFIA FSPALTRQGKFGGGGADGSIMLFSDIETNFAANNGVDDIVEQQKPIAIKHQ-VSFGDFIQ ISPSIAATGKFGGGGADGSIMIFDDIEPNFHANNGVDEI INAQKPFVAKHN-MTAGDFIQ FSPTLG-----G-GGADGSIIAFDTIETNFPANAGIDEIVSAQKPFVAKHN-ISAGDFIQ FSPSRG-----VMGGADGSVITFSDTEVNFPANLGIDEIVEAEKPFLARHN-ISAGDLVH $\begin{array}{ccccc}\text { FSPTKG----G-GGADGSVLTFSDPEVNFPANLGIDEIVEAQKPFLARHN-ISAGDLVQ } \\ : *: & * * * * *: ~ & * * *: ~ *: ~\end{array}$

AURDE－GP11 PHLRA－MnP2 PHACH－MnP1 BJEAD－LiP PHLRA－LiP3 PHACH－LiPH8 PLEOS－MnP4 BJEAD－VP BB8－PLEER－VP PLEOS－MnP5 PLEOS－VP3 Consensus

AURDE－GP11 PHLRA－MnP2 PHACH－MnP1 BJEAD－LiP PHLRA－LiP3 PHACH－LiPH8 PLEOS－MnP4 BJEAD－VP BB8－PLEER－VP PLEOS－MnP5 PLEOS－VP3 Consensus

AURDE－GP11 PHLRA－MnP2 PHACH－MnP1 BJEAD－LiP PHLRA－LiP3 PHACH－LiPH8 PLEOS－MnP4 BJEAD－VP BB8－PLEER－VP PLEOS－MnP5 PLEOS－VP3 Consensus

AURDE－GP11 PHLRA－MnP2 PHACH－MnP1 BJEAD－LiP PHLRA－LiP3 PHACH－LiPH8 PLEOS－MnP4 BJEAD－VP BB8－PLEER－VP PLEOS－MnP5 PLEOS－VP3 Consensus

E140G
V160A
FGAAVGLSLCPGAPT－IPAFVGRPNATMAAPDLTVP曰PFDDPDKIFARMADA－GFTPVEL FAGAVAISNCPGAPQ－LEFLAGRPNATAPAIDGLIPほPQDDVTKILARFKDAGNFSPAEV FAGAVALSNCPGAPR－LEFLAGRPNKTIAAVDGLIPほPQDSVTKILQRFEDAGGFTPFEV FAGAIAVTNCPGAPT－ISFSLGRPVATRPAPDGLVPEPFHTPDQIFARMLDALEFDPLET FSGAVGTSNCPGAPT－LNAFIGRKDATQAAPDGLVPFPFHDVNTILARFNDAGDFDELET FAGRVALSNCPGAPQ－MNFFTGRAPATQPAPDGLVPFPFHTVDQIINRVNDAGEFDELEL FAGAVGSSNCAGGPR－IQFLAGRSNVTKPSPDHLVPPFDSVTSILARMGDA－GFKPDEV FAGAVGVSNCPGAPQ－LSFFLGRPAATQPAPDGLVPほPFDSVTDILNRFADAGGFTTQEV FAGAVGVSNCPGGVR－IPFFLGRPDAVAASPDHLVPGPFDSVDSILARMGDA－GFSPAEV FAGTLGVSNCPGAPQNLSFFLGRPPAKAASPIGLVPפPFDTITDILARMDDA－GFVSVEV FAGALGVSNCPGAPR－IPFFLGRPPAKAASPIGLVPEPFDTVTDILDRMGDA－GFAAVEV ＊．．：：＊＊．：＊＊：：＊＊．＊：＊．＊＊＊

P182S T184M Q202L D213A

IHLLASHSIADQAGVDPEPQVLGAPFDSTPFSFDSQVFLEVLFEGILFPGSGPNPGELMS VALLASHSIARADHVDP－－TLDAAPFDSTPFDFDTQIFLEVLLKGVGFPGLANNTGEVSS VSLLASHSVARADKVDQ－－TIDAAPFDSTPFTFDTQVFLEVLLKGVGFPGSANNTGEVAS TWALIAHTVAAADDIDT－－SIRRSPFDSTPELFDGQFFIETQLKGTLFPGNGPNKGEVRS VWFLIAHSVAAQNDIDP－－AVSHAPFDSTPSVMDGQFFIETQLRGVEFIGSGGIEGVAES VWMLSAHSVAAVNDVDP－－TVQGLPFDSTPGIFDSQFFVETQLRGTAFPGSGGNQGEVES VALLASHSVAAQDTIDP－－KL舍GHPFDSTPSDFDSQFFVETLLKGTLIPGDSLHKGQVKS VWLLASHSIAAADHVDP－－TIPGSPFDSTPEIFDTQFFVETLLKGTLFPGTSGNQGEVES VWLLASHSIAAADKVDP－－SISGMPFDSTPGVFDSQFFIETLLKGRLFPGTAANKGEAQS VWLLSAHSVAAADHVDE－－SIPGTPFDSTPNLFDSQIFIETQLRGISFPGTGGNHGEVQS VWLLSSHTIAAADHVDE－－SIPGTPFDSTPSIFDSQFFIETQLRGTSFPGSGGNHGEVES

Q229P

PLP－－－－－－－GEFRLQSDKRFSLHNETACAWQENALSQSAMASNFQTAFTKLSLLGHDQN PLPVTDGTDVGELRLQSDFALARDERTACAWQSFVNEQEAMATAFKNAVKKLAVLGHNRN PLPLGSGSDTGEMRLQSDFALAHDPRTACIWQGFVNEQAFMAASFRAAMSKLAVLGHNRN

PVK－－－－－－－GEFRLMSDQQIARDNRTACEWQSFGTDQAKLQNRFQFIFEAMGQLGTDPT
PLP－－－－－－－GEIRIQSDHTIARDSRTACEWQSFVNNQSKLVDDFQFIFLALTQLGQDPN PLP－－－－－－－GEFRLQSDELLARDSRTSCEWQSFISNPNSMVPKFERAMAKMATLGQNPK PLA－－－－－－－GEIRLQSDADFARDSRTACEWQSFVNNQPRMQVLFKAAMQKLSILGHDLT PLQ－－－－－－－GEIRLPSDHLLARDPQTACEWQSMVNNQPKIQNRFAATMSKMALLGQDKT PLR－－－－－－－GEMRLQSDHLFARDDRTSCEWQSMTNDQQKIQDRFSDTLFKMSMLGQNQD PLA－－－－－－－GEIRLQSDHLLARDSRTSCEWQSMVDNMPKIQNRFAATMLKMSLLGQNQA ＊：

SLLDCSELIAQAPPATA－－SQGFFPAGKTMEDLEIGCDAEAFPTTLVTQAGQPTMIPPVD DLVDCSAVVPVPKPATG－－TPATFPASTGPQDLELTCTTEPFPTL－STAPGAQQTLIPHC SLIDCSDVVPVPKPATG－－QPAMFPASTGPQDLELSCPSERFPTL－TTQPGASQSLIAHC NMIDCSEVIPIPRNLTS－AQIPHFPAGKTIRDVEAACPETPFPRL－PTDAGRPTAVAPVP TLIDCSDVLPVPPPL－－－STVPHFPAGITINDVEPACAETPFPTL－PTDPGPATAVAAVP AMTDCSDVIPQSKPIPGNLPFSFFPAGKTIKDVEQACAETPFPTL－TTLPGPETSVQRIP KLIDCSEVIPVPRGR－－－VKQPTLPAGKTIKDIEASCRKAPFPRL－PTDKGTFTSILPVP QMIDCSDVIPVPPST－－AVRGSHLPAGNTLDDIEQACASTPFPTL－TADPGPATSVAPVP KLIDCSDVIPTPPAL－－－VGAAHLPAGFSLSDVEQACAATPFPAL－TADPGPVTSVPPVP AMIDCSDVIPVPAAL－－－VTKPHLPAGKVRTDVEQACATDAFPAL－AADPGPVTSVPRVP DLIDCSDVIPTPPAL－－－VGKAHLPAGKVQSDVEQACATTPFPAI－AADPGPVTAVPPVP 28 339 342 341 344

	G330R	
AURDE-GP11	VQDIAFGN----------------	347
PHLRA-MnP2	SDGTMTCNSVQFDGPATNFGGADDS	367
PHACH-MnP1	PDGSMSCPGVQFNGPA---------	357
BJEAD-LiP	R	346
PHLRA-LiP3	RD	343
PHACH-LiPH8	PPPGA	344
PLEOS-MnP4	S	342
BJEAD-VP	PS------------------------	345
BB8-PLEER-VP	RS------------------------	331
PLEOS-MnP5		340
PLEOS-VP3	PS------------------------	338

Fig. S2 MSA of representative ligninolytic peroxidases.
Sequences were obtained from the Uniprot database and aligned together with BB-8-PLEERVP (the VP mutant from Pleurotus eryngii, O94753; obtained in the present study) using the Clustal Omega server (http://www.ebi.ac.uk/Tools/msa/clustalo/). The accession numbers used in the MSA were: AURDE-GP11 (GP11 from Auricularia delicata; JOWUI3); PHLRA-MnP2 (MnP2 from Phlebia radiata; Q70LM3); PHACH-MnP1 (MnP1 from Phanerochaete chrysosporium; Q02567); BJEAD-LiP (LiP from Bjerkandera adusta; W8YN06); PHLRA-LiP3 (LiP3 from Phlebia radiata; Q53WT9); PHACH-LiPH8 (LiPH8 from Phanerochaete chrysosporium; P06181); PLEOS-MnP4 (MnP4 from Pleurotus ostreatus; AOA067NYV2); BJEAD-VP (VP from Bjerkandera adusta; W8YE46); PLEPU-MnP5 (MnP5 from Pleurotus pulmonarius; Q2VT17); PLEOS-VP3 (VP3 from Pleurotus ostreatus; AOA067NKY1). The mutations in the stabilizing backbone are highlighted in red, those mutations that promote functional expression in yeast in cyan, and the mutations driving activity at alkaline pHs in dark brown, orange and green.
AURDE-GP11
PHLRA-MnP2

PHACH-MnP1
 PHACH-
LiPH8

PLEOS-MnP4 BJEAD-VP
 $\stackrel{p}{p}$

PLEOS-MnP5

AURDE-GP11	$\mathbf{1 0 0}$	45.9	46.3	43.5	43.3	45.2	46.0	48.5	47.0	43.0
PHLRA MnP2	45.9	$\mathbf{1 0 0}$	72.8	41.7	45.0	47.6	48.0	52.7	48.6	49.5
PHACH-MnP1	46.3	72.8	100	43.6	47.4	47.3	50.6	56.8	52.9	50.6
BJEAD-LiP	43.5	41.7	43.6	$\mathbf{1 0 0}$	61.1	58.5	54.4	59.9	56.8	57.0
PHLRA-LiP3	43.3	45.0	47.4	61.1	100	63.2	50.4	58.8	54.2	52.2
PHACH-LiPH8	45.2	47.6	47.3	58.5	63.2	100	55.2	64.3	55.9	54.2
PLEOS-MnP4	46.0	48.0	50.6	54.4	50.4	55.2	$\mathbf{1 0 0}$	62.6	63.1	53.7
BJEAD-VP	48.5	52.7	56.8	59.9	58.8	64.3	62.6	100	69.5	62.0
BB8-PLEER-VP	47.0	48.6	52.9	56.8	54.2	55.9	63.1	69.5	$\mathbf{1 0 0}$	66.8
PLEOS-MnP5	43.0	49.5	50.6	57.0	52.2	54.2	53.7	62.0	66.8	$\mathbf{1 0 0}$
PLEOS-VP3	44.6	49.4	51.0	56.0	53.3	56.5	59.5	67.3	75.5	81.0
100										

Identity Matrix from MSA

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Reagents and strains

ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), 2,6-DMP (2,6Dimethoxyphenol), Reactive black 5 (RB5), sinapic acid, guaiacol, veratryl alcohol, syringaldazine, catechol, Manganese sulphate, Taq DNA polymerase, bovine hemoglobin, hemin from bovine, Horseradish peroxidase (HRP) and the S. cerevisiae transformation kit were purchased from Sigma-Aldrich (Madrid, Spain). Hydrogen peroxide 30 \% (v/v) was obtained from Merck Millipore (Darmstadt, Germany). Pfu-Ultra polymerase, Escherichia coli XL1-Blue chemocompetent cells and the GeneMorph II Kit (mutazyme II polymerase) were from Stratagene (La Jolla, CA, USA). The Zymoprep Yeast Plasmid Miniprep Kit was obtained from Zymo-Research (Orange, CA, USA). The Low melting point agarose was from Bio-Rad (Hercules, CA), the NucleoSpin and PCR clean-up kit from Macherey-Nagel (Düren, Germany) and the BamHI and Xhol restriction enzymes from New England Biolabs (Hertfordshire, U.K.). The protease-deficient S. cerevisiae strain BJ5465 (α ura3-52 trp1 leu2 41 his3 200 pep4::HIS3 prb1 11.6 R can1 GAL) was from LGCPromochem (Barcelona, Spain). The oligonucleotides used along the evolutionary process were purchased from Isogen Life Science (De Meern, The Netherlands). All chemicals were of reagent-grade purity.

Culture media

Synthetic complete (SC, minimum medium) contained 0.67% (w/v) yeast nitrogen base, $1.92 \mathrm{~g} / \mathrm{L}$ yeast synthetic drop-out medium supplement without uracil, 2% (w/v) Draffinose and $25 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol. SC-Hemin medium contained the recipe for SC plus bovine hemin ($25 \mathrm{~g} / \mathrm{L}$) and $67 \mathrm{mM} \mathrm{KH} \mathrm{KO}_{4}$ buffer (pH 6.0). YP (1.55 x) medium contained 10 g yeast extract, 20 g peptone and $\mathrm{ddH}_{2} \mathrm{O}$ to 650 mL . Microplate expression medium (YP- Hb)
contained 720 mL YP (1.55x), $67 \mathrm{~mL} 1 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ buffer (pH 6.0), $111 \mathrm{~mL} 20 \%$ (w/v) Dgalactose, $100 \mathrm{mg} / \mathrm{L}$ bovine hemoglobin, $1 \mathrm{ml} 25 \mathrm{~g} / \mathrm{L}$ chloramphenicol and $\mathrm{ddH}_{2} \mathrm{O}$ to 1000 mL . Microplate YP-EtOH expression medium contained 720 mL YP (1.55x), $67 \mathrm{~mL} 1 \mathrm{M} \mathrm{KH} 2 \mathrm{PO}_{4}$ buffer (pH 6.0), $111 \mathrm{~mL} 20 \%(\mathrm{w} / \mathrm{v})$ D-galactose, $25 \mathrm{~g} / \mathrm{L}$ ethanol absolute, $1 \mathrm{ml} 25 \mathrm{~g} / \mathrm{L}$ chloramphenicol and $\mathrm{ddH}_{2} \mathrm{O}$ to 1000 mL . YPD solution contained $1 \%(\mathrm{w} / \mathrm{v})$ yeast extract, 2% (w/v) peptone, 2\% (w/v) D-glucose and $25 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol. Flask expression medium contained 720 mL YP (1.55x), $67 \mathrm{~mL} 1 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ buffer (pH 6.0), $111 \mathrm{~mL} 20 \%$ (w/v) Dgalactose, $25 \mathrm{~g} / \mathrm{L}$ ethanol absolute, $500 \mathrm{mg} / \mathrm{L}$ bovine hemoglobin, $1 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{~mL} 25 \mathrm{~g} / \mathrm{L}$ chloramphenicol and $\mathrm{ddH}_{2} \mathrm{O}$ to $1,000 \mathrm{~mL}$. SC drop-out plates contained $0.67 \%(\mathrm{w} / \mathrm{v})$ yeast nitrogen base, $1.92 \mathrm{~g} / \mathrm{L}(\mathrm{w} / \mathrm{v})$ yeast synthetic drop-out medium supplement without uracil, 2% (w/v) bacto agar, $2 \%(w / v)$ D-glucose and $25 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol. Luria-Bertani (LB) medium was prepared with $1 \%(\mathrm{w} / \mathrm{v})$ peptone, $0.5 \%(\mathrm{w} / \mathrm{v})$ yeast extract, $1 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$ and $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and in the case of drop-out plates LB/amp plus $2 \%(\mathrm{w} / \mathrm{v})$ bacto agar.

Re-screenings

First re-screening: Aliquots of $5 \mu \mathrm{~L}$ of the best clones were removed from the master plates and used to inoculate $50 \mu \mathrm{~L}$ of SC minimal medium (SC-Hemin $1^{\text {st }}$ generation) in new 96 -well plates. Columns 1 and 12, and rows A and H , were not used to prevent the appearance of false positives. After incubating for 24 h at $30^{\circ} \mathrm{C}$, 225 rpm , and 80% relative humidity, $5 \mu \mathrm{~L}$ was transferred to the adjacent wells and incubated for a further 24 h . Finally, $160 \mu \mathrm{~L}$ of YP-Hb microplate expression medium (YP-EtOH for $1^{\text {st }}$ generation) was added and the plates were incubated for another 24 h . Accordingly, each mutant was grown in 4 wells. The parental types were subjected to the same procedure (row D, wells 7-11) and the plates were assessed using the same protocols as those used for the HTS-screening protocol.

Second re-screening: An aliquot from the wells with the best clones in the first re-screening was inoculated in 3 mL of YPD and incubated at $30^{\circ} \mathrm{C}$ and 225 rpm for 24 h , recovering the plasmids from these cultures (Zymoprep Yeast Plasmid Miniprep Kit). As the product of the zymoprep was very impure and the concentration of DNA extracted very low, the zymoprep mixtures containing shuttle vectors were transformed into super-competent E. coli cells (XL1Blue, Stratagene) and plated on LB/amp plates. Single colonies were picked and used to inoculate 5 mL LB/amp media, and they were grown overnight at $37^{\circ} \mathrm{C}$ and 225 rpm . The plasmids were then extracted (NucleoSpin Plasmid kit, Macherey-Nagel, Germany) and S. cerevisiae suspension was transformed with plasmids from the best mutants as well as with the parental type. Five colonies for each mutant were selected and re-screened as described above.

Third re-screening (determination of pH profiles, kinetic thermo-stabilities and pH stabilities):
A single colony from the S. cerevisiae clone containing the parental 2-1B, the new mutants and untransformed yeast were picked from a SC drop-out plate (SC supplemented with uracil for untransformed cells), inoculated into 5 mL of minimal medium and incubated for 48 h at $30^{\circ} \mathrm{C}$ and 225 rpm (Orbitron-INFORS, Biogen, Spain). An aliquot of cells was removed and used to inoculate a final volume of 5 mL of minimal medium in a 50 mL falcon tube (optical density, $\mathrm{OD}_{600}=0.3$), and they were incubated until two growth phases were completed (6-8 $h, \mathrm{OD}_{600}=1$). Thereafter, 9 mL of flask expression medium ($500 \mathrm{mg} / \mathrm{L}$ bovine hemoglobin) was inoculated with 1 mL of this pre-culture in a 100 mL flask ($\mathrm{OD}_{600}=0.1$). After incubating for $\sim 48 \mathrm{~h}$ at $30^{\circ} \mathrm{C}$ and 225 rpm (maximal VP activity; $\mathrm{OD}_{600}=25-30$), the cells were separated by centrifugation for 15 min at $3,000 \mathrm{rpm}$ and $4^{\circ} \mathrm{C}$ (Eppendorf 5810R Centrifuge with F-34-6-38 rotor, Germany), and the supernatants were collected and stored at $4^{\circ} \mathrm{C}$.
pH activity profile: Parental type (2-1B) and the mutant winners of each round of evolution were assayed for activity in a pH range from 2 to 9 . Aliquots ($20 \mu \mathrm{~L}$) of crude supernatants from S. cerevisiae were diluted to give a linear response in kinetic mode. Then, $180 \mu \mathrm{~L}$ of reaction mixture were added using a Multidrop station (Multidrop Combi, ThermoFischer Scientific,Vantaa, Finland). The final concentrations of reaction mixture per well were 100 mM citrate-phosphate-borate buffer at different $\mathrm{pH}(2-10), 0.1 \mathrm{mM}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ and 2 mM ABTS. The absorbance was recorded at 418 nm in kinetic mode using the plate reader.
pH stability assay: Appropriate dilutions of the supernatants were prepared such that aliquots $(20 \mu \mathrm{~L})$ produced a linear response in kinetic mode. Each variant was diluted in 100 mM citrate-phosphate-borate buffer with pH ranging from 3.0-10.0. Aliquots of $20 \mu \mathrm{~L}$ were removed during 144 h and measured in the presence of $180 \mu \mathrm{~L}$ of reaction. The final concentrations in the well were 100 mM citrate-phosphate-borate buffer $\mathrm{pH} 4.0,0.1 \mathrm{mM}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ and 2 mM ABTS. The absorbance was monitored at 418 nm in kinetic mode using a plate reader.

Thermostability assay (T_{50}): A gradient profile was constructed using a thermocycler (Mycycler, Bio-Rad, USA) for the selected mutants and the parental type, using $50 \mu \mathrm{~L}$ for each point in a gradient scale ranging from 30 to $80^{\circ} \mathrm{C}$. After a 10 min incubation, samples were removed and chilled on ice for 10 min . Thereafter, $20 \mu \mathrm{~L}$ samples were removed and incubated for 5 min at room temperature. Finally, $180 \mu \mathrm{~L}$ of 100 mM sodium tartrate buffer (pH 4.0), 2 mM ABTS and $0.1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ was added to the samples to measure activities. The thermostability values were calculated as the ratio between the residual activity at different temperature points and the initial activity at room temperature.

Production and Purification of VP variants

A single colony from transformed yeast cells was used to inoculate 20 mL of SC minimal medium (in a 100 mL flask) and incubated for 48 h at $30^{\circ} \mathrm{C}$ and 220 rpm (OrbitronINFORS, Biogen, Spain). Then, OD_{600} was measured and this pre-culture used to inoculate 120 mL of minimal medium in a 250 ml flask $\left(\mathrm{OD}_{600}=0.3\right)$. They were incubated until two growth phases had been completed $\left(6-8 \mathrm{~h}, \mathrm{OD}_{600}=1\right)$ and thereafter, 450 mL of flask expression medium ($500 \mathrm{mg} / \mathrm{L}$ bovine hemoglobin) was inoculated with 50 mL of this pre-culture in a 2 litre baffled flask $\left(\mathrm{OD}_{600}=0.1\right)$. The cultures were incubated for 48 h at $30^{\circ} \mathrm{C}$ and 230 rpm (Micromagmix shaker) and the maximal VP activity reached $\left(\mathrm{OD}_{600}=25-30\right)$; the cells were recovered by centrifugation at 5,000 rpm for 30 min at $4^{\circ} \mathrm{C}$ (Avanti J-E centrifuge Beckman Coulter with JA-14 rotor, Fullerton, CA). The supernatant was collected and triple filtered (through filter paper, a glass fibre filter and then a nitrocellulose membrane of $0.45 \mu \mathrm{~m}$ pore size).

Purification protocol: VP crude extracts were first submitted to a fractional precipitation with ammonium sulphate (50-75\%). Samples were pelleted at $12,000 \mathrm{rpm}, 15 \mathrm{~min}$ and $4^{\circ} \mathrm{C}$ (Avanti J-E centrifuge Beckman Coulter with JA-14 rotor). The final pellet was recovered and dialyzed in 20 mM piperazine buffer (buffer $\mathrm{P}, \mathrm{pH} 5.5$), then the sample was filtered and loaded on to the FPLC (Äkta Purifier; GE Healthcare Uppsala, Sweden) coupled with a strong anionexchange column (HiTraP QFF; GE Healthcare Uppsala, Sweden) pre-equilibrated with buffer P. The proteins were eluted with a linear gradient from 0 to 1 M of NaCl in two phases at a flow rate of $1 \mathrm{ml} / \mathrm{min}$: from 0 to 25% over 60 min and from 25 to 100% over 5 min . Fractions with VP activity were pooled, concentrated and dialysed against buffer P with a stirred ultrafiltration cell and an ultracell 10 kDa ultrafiltration Disc of 44.5 mm (Amincon cell, Merck

Millipore, Germany). Thereafter, samples were loaded onto a HPLC-PDA column coupled with a $10 \mu \mathrm{~m}$ high resolution anion-exchange Biosuite Q (Waters) pre-equilibrated with buffer P . The proteins were eluted on a linear gradient from 0 to 1 M NaCl at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ in two phases: from 0 to 6% in 30 min , and from 6 to 100% in 5 min . The fractions with VP activity were pooled, dialysed against 10 mM sodium tartrate buffer (pH 5.0), concentrated and stored at $4{ }^{\circ} \mathrm{C}$. Throughout the purification protocol, the fractions were analysed by SDS/PAGE on 12% gels and the proteins were stained with colloidal Coomassie Blue (Protoblue Safe, National Diagnostics). Purified VP concentrations were determined spectrophotometrically (SHIMADZU UV-1800 spectrophometer, Columbia, MD, USA) in 1 mL quartz cuvettes with molar extinction coefficient for VP at $407 \mathrm{~nm}\left(\varepsilon_{\mathrm{vp}}=150,000 \mathrm{M}^{-1}\right.$. $\left.\mathrm{cm}^{-1}\right)$. The Reinheitszahl values $\left(\mathrm{R}_{\mathrm{z}}: \mathrm{Abs}_{407} / \mathrm{Abs}_{280}\right)$ obtained were above 2.

