SUPPORTING INFORMATION

Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis

M. Buaki-Sogó,^a A. Vivian,^a L. A. Bivona,^{a,b} H. García,^c M. Gruttadauria,^{b,*} C. Aprile^{a,*}

Contents:

Figure S1: ¹H-NMR (400 MHz, (CD₃)₂SO) spectrum of **S-Imi**

Figure S2: ¹³C-NMR (125 MHz, (CD₃)₂SO) spectrum of S-Imi

Figure S3: ¹H-NMR (400 MHz, (CD₃)₂SO) spectrum of **bV-Imi**

Figure S4: ¹³C-NMR (125 MHz, (CD₃)₂SO) spectrum of **bV-Imi**

Figure S5: TEM image of **S-Imi-NT-1**

Figure S6: TEM images of **bV-Imi-NT-2**

Figure S7: Pore Size Distribution of raw SWCNT (a), **S-Imi-NT-1** (b) and **bV-Imi-NT-2** (c) catalyst obtained from the BJH desorption data

Figure S8: ¹H-NMR (400 MHz) spectrum of a reaction mixture of **bV-Imi-NT-2** with ECH (CDCl₃)

Figure S9: ¹H-NMR (400 MHz) spectrum of a reaction mixture of **bV-Imi-NT-2** with PO (tol-d₈)

Figure S10: ¹H-NMR (400 MHz, DMSO) spectrum of a reaction mixture of **bV-Imi-NT-2** with GLY

Figure S11: ¹³C- CP-MAS -NMR of self-condensed bV-Imi polymer

Figure S12: Nitrogen adsorption-desorption isotherms of self-condensed bV-Imi polymer

Figure S13: ¹H-NMR (400 MHz, tol-d₈) spectrum of the mixture after the 1st reuse cycle of **bV-Imi-NT-2** with SO (see article, Figure 5)

Figure S1: ¹H-NMR (400 MHz, (CD₃)₂SO) spectrum of S-Imi

Figure S2: ¹³C-NMR (125 MHz, (CD₃)₂SO) spectrum of S-Imi

Figure S3: ¹H-NMR (400 MHz, (CD₃)₂SO) spectrum of bV-Imi

Figure S4: ¹³C-NMR (125 MHz, (CD₃)₂SO) spectrum of bV-Imi

Figure S5: TEM image of S-Imi-NT-1

Figure S6: TEM images of bV-Imi-NT-2 (a) and (b).

Figure S7: Pore Size Distribution of raw SWCNT (a), **S-Imi-NT-1** (b) and **bV-Imi-NT-2** (c) catalyst obtained from the BJH desorption data.

Figure S8: ¹H-NMR (400 MHz) spectrum of the reaction mixture of **bV-Imi-NT-2** with ECH (CDCl₃). The signals in the aromatic region are due to the presence of the biphenyl used as internal standard for GC analysis.

Figure S9: ¹H-NMR (400 MHz) spectrum of the reaction mixture of **bV-Imi-NT-2** with PO (tol-d₈). The signals in the aromatic region are partially due to the presence of the biphenyl.

Figure S10: ¹H-NMR (400 MHz, DMSO) spectrum of the reaction mixture of **bV-Imi-NT-2** with GLY. The signals in the aromatic region are due to the presence of the biphenyl.

Figure S12: Nitrogen adsorption-desorption isotherms of self-condensed bV-Imi polymer

Figure S13: ¹H-NMR (400 MHz, tol-d₈) spectrum of the mixture after the 1st use of **bV-Imi-NT-2** with SO (see article, Figure 5)

