## **Supporting Information**

## Niobic acid nanoparticle catalysts for the aqueous phase transformation of glucose and fructose to 5-hydroxymethylfufural

Mariano Tapia Reche,<sup>a</sup> Amin Osatiashtiani,<sup>a</sup> Lee J. Durndell,<sup>a</sup> Mark A. Isaacs,<sup>a</sup> Ângela Silva,<sup>b</sup> Adam F. Lee<sup>a</sup> and Karen Wilson<sup>a\*</sup>

<sup>*a*</sup>European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK. <sup>b</sup>Laboratório de Bioinorgânica e Catálise, Universidade Federal do Paraná (UFPR), Departamento de Química, CP 19081, CEP 81531-990, Curitiba, Paraná, Brasil.



\*Corresponding author: E-mail: k.wilson@aston.ac.uk

Fig S1. Low angle XRD patterns of PNA/SBA-15 as a function of Nb loading.



Fig S2. Wide angle XRD patterns of PNA/SBA-15 as a function of Nb loading.



Fig. S3. HRTEM of 10%PNA/SBA-15 showing (a) highly dispersed Nb-containing nanoparticles decorating (b) hexagonal close-packed silica mesopore channels.



Fig. S4. N<sub>2</sub> adsorption-desorption isotherms of PNA as a function of calcination temperature.



Fig S5. N<sub>2</sub> adsorption-desorption isotherms of PNA/SBA-15 as a function of Nb loading.



Fig S6. Nb 3d XP spectra of pure PNA and PNA/SBA-15 as a function of Nb loading.



Fig S7. In-vacuo DRIFT spectra of pyridine treated PNA as a function of calcination temperature.



Fig S8. In-vacuo DRIFT spectra of pyridine treated PNA as a function of Nb loading.



Fig S9. Total acid site density of PNA/SBA-15 as a function of Nb loading.



Fig. S10. Turnover frequencies for glucose and fructose normalised to Lewis or Brönsted acid loadings respectively during aqueous phase conversion over parent PNA as a function of reaction temperature. Reaction conditions: 0.1 g glucose or fructose, 0.1 g PNA, 20 cm<sup>3</sup> water.



**Fig. S11.** Turnover frequencies for the aqueous phase conversion of glucose and fructose normalised to Lewis or Brönsted acid loadings respectively (filled symbols), and associated 5-HMF productivity normalised to total acid loading (open symbols), over parent PNA as a function of calcination temperature. Reaction conditions: 0.1 g glucose or fructose, 100 °C, 0.1 g PNA, 20 cm<sup>3</sup> water.



Fig. S12. Aqueous phase conversion of 5-HMF to levulinic acid over PNA. Reaction conditions: 0.1 g 5-HMF, 100 °C, 0.1 g PNA, 20 cm<sup>3</sup> water.



**Fig. S13.** Aqueous phase conversion of fructose to glucose (black) and 5-HMF (white) over PNA supported on SBA-15 as a function of Nb loading. Reaction conditions: 0.1g fructose, 100 °C, 0.1 g X%PNA/SBA-15, 20 cm<sup>3</sup> water.



**Fig. S14.** Reactively-formed propene desorption from propylamine over PNA supported on SBA-15 as a function of Nb loading. Reaction conditions: 0.2 ml propylamine, 6.5 mg X%PNA/SBA-15, ramp-rate 10 °C.min<sup>-1</sup>.