Electronic Supplementary Information (ESI) for

Thermoregulated phase-transfer iridium nanoparticle catalyst:

highly selective hydrogenation of C=O bond for α , β -unsaturated

aldehydes while C=C bond for α , β -unsaturated ketones

Wenjiang Li, Yanhua Wang*, Pu Chen, Min Zeng, Jingyang Jiang and Zilin Jin State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China

* *Corresponding author. Tel.:* +86-411-84986033; *fax:* +86-411-84986033; *E-mail address: yhuawang@dlut.edu.cn*

Experimental Details

Materials and analyses

Iridium (III) chloride (IrCl₃, 99.9%, metals basis) was purchased from Alfa Aesar. 1-Pentanol was purchased from Kermel. Cinnamaldehyde (CAL) and other substrates were supplied from Alfa Aesar. All these chemical agents were analytical reagents. Thermoregulated ligand Ph₂P(CH₂CH₂O)_nCH₃ (n = 22) was prepared according to the method reported in the literature.¹ The TEM images were taken with a Philips Tecnai G² 20 TEM at an accelerating voltage of 200 kV. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses of metal elements were carried out on Optima 2000DV (Perkin Elmer, USA). Gas chromatography analyses were performed on a Tianmei 7890 GC equipped with a 50 m OV-101 column and an FID detector. GC-MS measurement was performed on a HP 6890 GC/5973 MSD instrument.

Preparation of the iridium nanoparticle catalyst

4 mL of aqueous solution of $IrCl_3$ (6.7×10⁻⁶ mol), 7.82 mg of thermoregulated ligand $Ph_2P(CH_2CH_2O)_{22}CH_3$ (6.7×10⁻⁶ mol), 4 mL of 1-pentanol were added in a 75 mL teflon-lined standard stainless-steel autoclave and stirred under hydrogen (4 MPa) at 90 °C for 6 h. Then the reactor was cooled to room temperature and depressurized. The color of the aqueous phase changed from light green to brown, indicating the formation of iridium nanoparticles (Ir-NPs) (see Fig. S3).

The reversible phase transfer

The fresh Ir-NPs solution (4 mL) and 1-pentanol (4 mL) were added into a 20 mL

Schlenk tube, and then stirred and heated in a 70 °C thermostatic oil bath for several

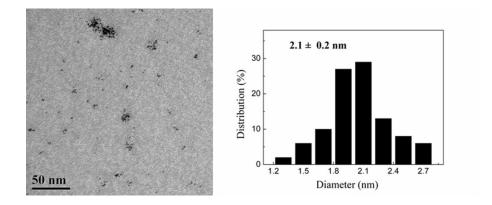
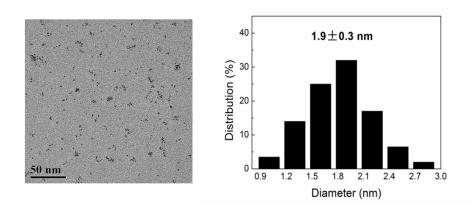
minutes under a nitrogen atmosphere. Soon we would observe the Ir-NPs transfer from aqueous to 1-pentanol. After that, the Schlenk tube was cooled to room temperature for enough time, and the Ir-NPs could transfer from 1-pentanol phase to aqueous phase (see Fig. S4).

The chemoselective hydrogenation of cinnamaldehyde

The chemoselective hydrogenation of cinnamaldehyde was carried out in a 75 mL teflon-lined standard stain-steel autoclave immersed in a thermostatic oil bath. The

stirring rate was the same for all experiments. The autoclave was charged with the asprepared Ir-NPs, water, 1-pentanol, cinnamaldehyde and *n*-decane (as internal standard) and flushed 5 times with 1 MPa H₂. The reactor was pressurized with H₂ up to the required pressure and held at the scheduled temperature for a fixed length of time. Then, the reactor was cooled to room temperature and depressurized. The upper 1pentanol phase was carefully removed from the lower aqueous phase by syringe and immediately analyzed by GC and GC-MS.

Supplementary Figure

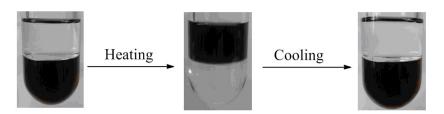

Fig. S1. TEM micrograph and particle size histogram of the Ir-NPs after three cycles

Fig. S2. TEM micrograph and particle size histogram of thermoregulated ligand Ph₂P(CH₂CH₂O)₂₂CH₃-stabilized Ir-NPs (Freshly prepared)

Fig. S3. Photograph for the as-prepared Ir-NPs in the aqueous (the lower)/1-pentanol (the upper) biphasic system

Fig. S4. Phase-transfer photographs for the freshly prepared Ir-NPs in the aqueous (the lower)/1-pentanol (the upper) biphasic system

Cycle number	1	2	3	4	5	6	7
Ir leaching (wt. %)	6.5	2.1	1.4	1.1	0.6	0.4	0.5

Table S2 The reusability of the as-prepared Ir-NPs for the chemoselective hydrogenation of CAL.^a

Entry	Time (min)	Conversion (%) ^b	Selectivity (%) ^{b,c}
1	30	74	>99
2	30	74	>99
3	40	76	>99
4	90	78	99
5	150	77	99
6	230	73	98
7	390	76	98

^a Reaction conditions: 1-pentanol 4 mL, water 4 mL containing 6.7×10^{-3} mmol Ir-NPs (Ph₂P(CH₂CH₂O)₂₂CH₃/Ir = 1 (molar ratio)), CAL/Ir = 100 (molar ratio), 50 mg of *n*-decane as internal standard, T = 70 °C, 1 MPa H₂. ^b Determined by GC and GC-MS. ^c Selectivity for cinnamyl alcohol and the main by-product was 3-phenyl-1-propanol.

Supplementary References:

1 M. Solinas, J, Jiang, O.Stelzer and W. A. Leitner, *Angew. Chem., Int. Ed.*, 2005, 44, 2291-2295.