Supplementary Information for
 "Three pathways to selective catalytic reduction of $\mathbf{N O}$ over $\mathbf{P t} / \mathbf{N b}$-AlMCM-41 under \mathbf{H}_{2} with excess O_{2} "

Masaru Komatsubara, ${ }^{a}$ Akiko Koga, ${ }^{a}$ Masashi Tanaka, ${ }^{b}$ Rina Hagiwara ${ }^{a}$ and Masakazu Iwamoto*b
${ }^{\text {a }}$ Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-5 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
${ }^{\mathrm{b}}$ Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

* Corresponding author at: Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

E-mail address: iwamotom@tamacc.chuo-u.ac.jp (M. Iwamoto).

Fig. S1. XRD patterns of $\mathrm{Pt} / \mathrm{M} 41$ and $\mathrm{Pt} / \mathrm{Nb}-\mathrm{M} 41$ of various $\mathrm{Si} / \mathrm{Nb}$ ratios. The lower and higher angles are shown separately in (a) and (b).

Fig. S2 Effect of Nb on the catalytic activity of (a) $\mathrm{Pt} / \mathrm{AlM} 41$ and (b) $\mathrm{Pt} / \mathrm{SiM} 41$ for $\mathrm{H}_{2^{-}}$ SCR reaction. Feed gas was a mixture of $0.1 \% \mathrm{NO}, 0.8 \% \mathrm{H}_{2}$, and $14 \% \mathrm{O}_{2}$ in He ; total flow rate was $100 \mathrm{~mL} \mathrm{~min}^{-1}\left(\right.$ GHSV 20,000 $\left.\mathrm{h}^{-1}\right)$.

Fig. S3. Catalytic activity of $\mathrm{Pt} / 3 \mathrm{Nb} / \mathrm{AlM} 41$ prepared by impregnation for H_{2}-SCR: (a) NO conversion, (b) N_{2} and $\mathrm{N}_{2} \mathrm{O}$ yields, and (c) H_{2} conversion. The amount of niobium loaded was $3 \mathrm{wt} \%$. Symbols: closed circle, $Y_{\mathrm{N} 2}+Y_{\mathrm{N} 2 \mathrm{O}}$; closed triangle, $Y_{\mathrm{N} 2}$; open triangle, $Y_{\mathrm{N} 2 \mathrm{O}}$; open rhombus, $X_{\mathrm{H} 2}$. Reaction conditions are the same as in Fig. S2.

Fig. S4. Catalytic activity of $\mathrm{Pt} / \mathrm{Nb}-\mathrm{AlM} 41 \mathrm{~s}$ with $\mathrm{Si} / \mathrm{Nb}$ ratios of $16-429$ for H_{2}-SCR: (a) NO conversion, (b) N_{2} and $\mathrm{N}_{2} \mathrm{O}$ yields, and (c) H_{2} conversion. Symbols: closed circle, $Y_{\mathrm{N} 2}+Y_{\mathrm{N} 2 \mathrm{O}}$; closed triangle, $Y_{\mathrm{N} 2}$; open triangle, $Y_{\mathrm{N} 2 \mathrm{O}}$; open rhombus, $X_{\mathrm{H} 2}$. Reaction conditions are the same as in Fig. S2.

Fig. S5 Effect of partial pressure of H_{2} on $\mathrm{H}_{2}-\mathrm{SCR}$ over $\mathrm{Pt} / \mathrm{Nb} 55-\mathrm{AlM} 41$. The reaction conditions are the same as in Fig. 1 except for partial pressure of $\mathrm{H}_{2}(0-0.8 \%)$.

Fig. S6 Effect of partial pressure of O_{2} on H_{2} - SCR over $\mathrm{Pt} / \mathrm{Nb} 55-\mathrm{AlM} 41$. The reaction conditions are the same as in Fig. 1 except for partial pressure of $\mathrm{O}_{2}(0-14 \%)$.

Fig. S7. Effect of GHSV on H_{2}-SCR over $\mathrm{Pt} / \mathrm{Nb} 55-\mathrm{AlM} 41$: (a) N_{2} and $\mathrm{N}_{2} \mathrm{O}$ yields and (b) H_{2} conversion. Symbols: closed triangle, $Y_{\mathrm{N} 2}$; open triangle, $Y_{\mathrm{N} 20}$; open rhombus, $X_{\mathrm{H} 2}$. The reaction conditions are the same as in Fig. 1 except for GHSV $\left(20,000-80,000 \mathrm{~h}^{-1}\right)$.

Fig. S8 $\mathrm{NO}_{2}-\mathrm{H}_{2}-\mathrm{O}_{2}$ reaction over $\mathrm{Pt} / \mathrm{Nb} 55-\mathrm{AlM} 41$. Feed gas was a mixture of $0.1 \% \mathrm{NO}_{2}$, $0.8 \% \mathrm{H}_{2}$, and $14 \% \mathrm{O}_{2}$ in He ; total flow rate was $100 \mathrm{~mL} \mathrm{~min}^{-1}$ (GHSV 20,000 h^{-1}).

Fig. S9. In situ FT-IR spectra of adsorbed species on (a) $\mathrm{Pt} / \mathrm{AlM} 41$, (b) $\mathrm{Pt} / \mathrm{SiM} 41$, and (c) $\mathrm{Pt} / \mathrm{Nb} 20-\mathrm{SiM} 41$ in the flow of reactant gases at (1) 373, (2) 403, (3) 433, (4) 463, (5) 493, and (6) 523 K . Feed gas was a mixture of $0.1 \% \mathrm{NO}, 0.8 \% \mathrm{H}_{2}$, and $14 \% \mathrm{O}_{2}$ in He ; total flow rate was $100 \mathrm{~mL} \mathrm{~min}^{-1}$.

