Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for

"Three pathways to selective catalytic reduction of NO over Pt/Nb-AlMCM-41 under H₂ with excess O₂"

Masaru Komatsubara,^a Akiko Koga,^a Masashi Tanaka,^b Rina Hagiwara^a and Masakazu Iwamoto^{*b}

^a Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-5 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan

^b Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo

112-8551, Japan

* Corresponding author at: Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

E-mail address: iwamotom@tamacc.chuo-u.ac.jp (M. Iwamoto).

Fig. S1. XRD patterns of Pt/M41 and Pt/Nb-M41 of various Si/Nb ratios. The lower and higher angles are shown separately in (a) and (b).

Fig. S2 Effect of Nb on the catalytic activity of (a) Pt/AlM41 and (b) Pt/SiM41 for H₂-SCR reaction. Feed gas was a mixture of 0.1% NO, 0.8% H₂, and 14% O₂ in He; total flow rate was 100 mL min⁻¹ (GHSV 20,000 h⁻¹).

Fig. S3. Catalytic activity of Pt/3Nb/AlM41 prepared by impregnation for H₂-SCR: (a) NO conversion, (b) N₂ and N₂O yields, and (c) H₂ conversion. The amount of niobium loaded was 3 wt%. Symbols: closed circle, $Y_{N2}+Y_{N2O}$; closed triangle, Y_{N2} ; open triangle, Y_{N2O} ; open rhombus, X_{H2} . Reaction conditions are the same as in Fig. S2.

Fig. S4. Catalytic activity of Pt/Nb-AlM41s with Si/Nb ratios of 16-429 for H₂-SCR: (a) NO conversion, (b) N₂ and N₂O yields, and (c) H₂ conversion. Symbols: closed circle, $Y_{N2}+Y_{N2O}$; closed triangle, Y_{N2} ; open triangle, Y_{N2O} ; open rhombus, X_{H2} . Reaction conditions are the same as in Fig. S2.

Fig. S5 Effect of partial pressure of H_2 on H_2 -SCR over Pt/Nb55-AlM41. The reaction conditions are the same as in Fig. 1 except for partial pressure of H_2 (0-0.8%).

Fig. S6 Effect of partial pressure of O_2 on H₂-SCR over Pt/Nb55-AlM41. The reaction conditions are the same as in Fig. 1 except for partial pressure of O_2 (0-14%).

Fig. S7. Effect of GHSV on H₂-SCR over Pt/Nb55-AlM41: (a) N₂ and N₂O yields and (b) H₂ conversion. Symbols: closed triangle, Y_{N2} ; open triangle, Y_{N2O} ; open rhombus, X_{H2} . The reaction conditions are the same as in Fig. 1 except for GHSV (20,000-80,000 h⁻¹).

Fig. S8 NO₂-H₂-O₂ reaction over Pt/Nb55-AlM41. Feed gas was a mixture of 0.1% NO₂, 0.8% H₂, and 14% O₂ in He; total flow rate was 100 mL min⁻¹ (GHSV 20,000 h⁻¹).

Fig. S9. In situ FT-IR spectra of adsorbed species on (a) Pt/AlM41, (b) Pt/SiM41, and (c) Pt/Nb20-SiM41 in the flow of reactant gases at (1) 373, (2) 403, (3) 433, (4) 463, (5) 493, and (6) 523 K. Feed gas was a mixture of 0.1% NO, 0.8% H₂, and 14% O₂ in He; total flow rate was 100 mL min⁻¹.