SUPPORTING INFORMATION

Augmentation of the Productivity in Olefin Cross-Metathesis: Maleic Acid does the Trick!

Leonildo A. Ferreira, Henri S. Schrekker*

Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil. e-mail: henri.schrekker@ufrgs.br

Figure S1 Time-dependent plots of the effect of the MO purification procedure on the product distribution in the CM of MO with MA-H catalyzed by GII	пе 32
Figure S2 Typical chromatogram obtained in the cross-metathesis of MO with MA (after derivatization).	-Н 33
Table S1 Effect of the catalyst on the CM of MO with MA-H.	34
Table S2 Composition of the vegetable oils used	34
Figure S3 Typical ¹ H NMR spectrum of a vegetable oil with the signal attributions at the formulae used to calculate the molecular weight and number of C-C double bong per triglyceride	nd ds 35
Figure S4 Inset of the olefinic region of a typical ¹ H NMR spectrum of the CM vegetable oils with MA-H with the signal attributions and the formula used to calcula the yield of cross-metathesis products	of ite 36
Spectra	37

Figure S1 Time-dependent plots of the effect of the **MO** purification procedure on the product distribution in the CM of **MO** with **MA-H** catalyzed by **GII** (data are summarized in **Table 1**). The lines were added with the only purpose to aid visualization.

Figure S2 Typical chromatogram obtained in the cross-metathesis of **MO** with **MA-H** (after derivatization). Methyl 2-undecenoate (8.18 min); 9-octadecene (8.40 min); internal standard (1,3,5-trimethoxybenzene; 15.17 min); unknown compound (16.86 min); methyl oleate (17.52 min); dimethyl 2-undecenedioate (17.86 min); dimethyl 9-octadecenedioate (21.63 min).

Conditions: **MO**: 0.5236 g (1.766 mmol); **MA-H**: 0.2086 g (1.797 mmol); 1,3,5trimethoxybenzene: 0.3056 g (1.817 mmol); **GII**: 3 mL of a 0.5889 mol.L⁻¹ THF solution (0.00176 mmol); THF: 7 mL in total; reaction time: 70 min; temperature: 50 °C.

GC method: Column: DN-WAX (polyethyleneglycol; internal diameter: 0.32 mm; length: 30.0 m; film thickness: 0.25 μ m); Injector temperature: 230 °C; Carrier gas: N₂ (3.6 mL/min); Detector temperature: 230 °C; Split flow: 180 mL/min; Split rate: 1:50; Oven temperature:

	Temp. (°C)	Time (min)	Rate (°C/min)
1	120.0	1.00	1.0
2	130.0	1.00	20.0
3	210.0	9.00	0.00

Entry	Cat.	Temp.	Conv. Yield (d (%)
		(°C)	(%)	СМ	SM
13 ^a	GII	40	94	85	6
14 ^a	GII	50	93	84	6
15 ^{a,b}	GII	60	92	82	7
16 ^a	GII	reflux	90	77	12
17	HGII	50	82	57	21
17 ^b	HGII	60	88	69	15
19	HGII	reflux	82	60	20
20 ^b	Indll	60	90	73	13
21 ^b	Um42	60	56	14	41
22	Um42	reflux	60	17	42

Table S1 Effect of the catalyst on the CM of MO with MA-H.

Conditions: **MO:MA-H** molar ratio = 1:2 (**MO** = 1.77 mmol); **Cat.** = 0.05 mol%; THF = 1.5 mL; purification method D. Isomerization products complete the mass balance. ^a values plotted in Figure 6. ^b Values plotted in Figure 7.

Oil				% ^a			
	C18:1	C18:2	C18:3	C16:1	C18:0	C16:0	Others
Canola	62.5	21.5	8.7	0.2	2.4	4.7	7.1
Linseed	22.3	15	52.8	0.1	4.1	5.7	9.8
Sunflower	40.1	47.7	1.5	0.1	3.1	7.6	10.6
Grapeseed	20.5	68.2	0.3	0.1	3.7	7.2	10.9
Corn	34.2	51.3	0.8	0.1	0.9	12.7	13.6
Soybeam	23.2	55.9	6.4	0	3	11.5	14.5
Olive	78.3	6.2	0	0.7	3	11.7	14.8
Peanut	52.3	31.9	0	0.2	3	12.5	15.6
Rice	41.6	35.5	1.8	0.1	1.6	19.4	21
Cottonseed	15.3	59	0.1	0.4	2	23.2	25.2
Palm	55.4	12.7	0	0.2	3	28.7	31.7

^a Calculated by GC.

Figure S3 Typical ¹H NMR spectrum of a vegetable oil with the signal attributions and the formulae used to calculate the molecular weight and number of C-C double bonds per triglyceride. * Residual water.

Figure S4 Inset of the olefinic region of a typical ¹H NMR spectrum of the CM of vegetable oils with **MA-H** with the signal attributions and the formula used to calculate the yield of cross-metathesis products.

Spectra MA-ⁱPent

¹H NMR (300 MHz, CDCl₃) δ 6.97 (dt, *J* = 15.6, 7.0 Hz, 1H), 5.81 (dt, *J* = 15.6, 1.5 Hz, 1H), 3.72 (s, 3H), 2.19 (qd, *J* = 7.0, 1.5 Hz, 2H), 1.51 - 1.36 (m, 2H), 1.38 - 1.16 (m, 10H), 0.88 (t, *J* = 6.7 Hz, 3H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 167.36, 149.99, 120.94, 51.51, 32.37, 31.98, 29.49, 29.33, 29.28, 28.17, 22.79, 14.22.

S10

Dimethyl (E)-undec-2-enedioate

¹H NMR (400 MHz, CDCl₃) δ 6.98 (dt, *J* = 15.6, 7.0 Hz, 1H), 5.83 (dt, *J* = 15.6, 1.6 Hz, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 2.32 (t, *J* = 7.5 Hz, 2H), 2.21 (qd, *J* = 7.0, 1.6 Hz, 2H), 1.74 – 1.54 (m, 2H), 1.54 – 1.39 (m, 2H), 1.39 – 1.25 (m, 6H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 174.37, 167.31, 149.78, 121.02, 51.59, 51.51, 34.19, 32.29, 29.13, 29.04, 28.07, 25.02.

