Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

I.

Table 1 Comparison of O_2 and Ni properties with experiments in isolated and adsorbed states.

	^		
Ni	EXP.	O_2	EXP.
3.52 Å	3.52 Å [1]		
0.010Å	0.007 <u>+</u> 0.003Å [2]		
0.60 µ _B	0.60-0.62 μ _B [1,3]		
		1.23 Å	1.21[4]
		1.96 μ _B	
	O atom on Ni(111)		
1	1.86-1.89Å 1.85 ± 0		05 Å [5]
	1.20 Å 1.21 ± 0.09Å [5]		09Å [5]
	3.52 Å 0.010Å 0.60 μ _B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

References

[1] F Starrost, H Kim, S C Watson, E Kaxiras and E A Carter, *Phys. Rev. B*, 2001, 64, 235105.
[2] T Okazawa, F Takeuchi and Y. Kido *Phys. Rev. B*, 2005, 72, 075408.
[3] M Donath *Sur. Sci. Rep.* 1994, 20, 251.
[4] CRC Handbook of Chemistry and Physics, 86th ed., CRC Press, Boca Raton, FL, 2005.
[5] M Pedio, L Becker, B Hillert, S D Addato and J Haase Phys. Rev. B, 1990, 41, 7462.

equation (1), we get the

II.

Further discussions for Equation (1) in the manuscript:

The $F_I(r-r_I)$ is a function with a norm (or value) 1 inside the sphere Ω_I and smoothly goes

to zero at the boundary so that when it is multiplied to the magnetization density, m(r) in

$$M_I = \int_{\Omega_I} m(r) d^3 r$$

inside the Ω_I and 0 at the boundary as expected.

 $\sin(x)$ The appropriate form of F_I is x because the limit of this function as $x \rightarrow 0$ is 1 and 0 at $x = \pi$ and from 0 to π , it decreases smoothly (monotonically). The $x = \pi (|r - r_I|)/R_I$, where R_I is the radius of the sphere, Ω_I , can describe such condition for F_I . If r tends to r_I (inside

sphere),
$$x \rightarrow 0$$
, $F_I(r - r_I) = 1$ and $M_I = \int_{\Omega_I} m(r) d^3 r$.
 $F_I(r - r_I) = 0$, so $M_I = 0$.