Co-decorated Cu Alloy Catalyst for C₂ Oxygenates and Ethanol Formations from Syngas on Cu-based Catalyst: Insight into the Role of Co and Cu, as well as the Improved Selectivity

Riguang Zhang, Fu Liu, Baojun Wang,*

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. China

1. CH_x(x=1-3) Formation on CoCu(211) Surface

1.1 CH Formation

CHO species adsorbed at the Co-Cu mixed site is the dominant product for CO initial activation on CoCu(211) surface; thus, starting from CHO and CHO+H species, four possible pathways with five reactions (**R6~10**) may be responsible for CH formation. Meanwhile, CHO hydrogenation to CH_2O (**R11**) is also considered.

For R6, the direct C–O bond cleavage of CHO adsorbed at the bridge-SE-2 Co-Cu site can form CH and O via a transition state TS6, this elementary reaction requires an activation barrier of 169.2 kJ·mol⁻¹ with the reaction energy of -0.1 kJ·mol⁻¹, and the reaction rate constant is $5.73 \times 10^{-6} s^{-1}$ ¹ (*In the text, only the rate constants of all elementary reactions at the temperature of 500 K is presented, those at other temperatures are listed in* Table 3); in TS6, both CH and O species are adsorb at the hollow-2 and bridge-SE-2 sites, respectively, the C–O distance is elongated to 1.926 Å from 1.257 Å in CHO.

Starting from the initial state, CHO+H(1), the dissociation of CHO with H-assisted (R7) leads

^{*}Corresponding author at: No. 79 Yingze West Street, Taiyuan 030024, China. Tel.: +86 351 6018239; Fax: +86 351 6041237 Email address: wangbaojun@tyut.edu.cn; wbj@tyut.edu.cn (Baojun Wang)

to the formations of CH and OH species via a transition state TS7, this elementary reaction has an activation barrier of 155.7 kJ·mol⁻¹, it is endothermic by 12.9 kJ·mol⁻¹, and the reaction rate constant is 8.14×10^{-4} s⁻¹; in TS7, CH and OH species are adsorbed at the Co-Cu bridge and bridge-SE-2 sites, respectively, in which the O–H distance is 0.978 Å. Moreover, CHOH may be responsible for CH formation, thus, CHOH formation is firstly investigated.

For **R8**, CHO is hydrogenated to form CHOH via a transition state TS8, this elementary reaction has an activation barrier of 133.0 kJ·mol⁻¹, it is endothermic by 55.1 kJ·mol⁻¹, and the reaction rate constant is $0.36 \ s^{-1}$; in TS8, the O–H distance is decreased to 1.399 Å from 3.122 Å in CHO+H(1). Subsequently, CHOH direct dissociation (**R9**) and its dissociation with H-assisted (**R10**) have the activation barriers of 102.0 and 188.1 kJ·mol⁻¹ with the corresponding reaction energies of -42.2 and 25.2 kJ·mol⁻¹, respectively.

For **R11**, starting from CHO+H(2), CHO hydrogenation to CH₂O via a transition state TS11 has an activation barrier of 47.7 kJ·mol⁻¹, this elementary reaction is slightly endothermic by 3.3 kJ·mol⁻¹, and the reaction rate constant is $7.14 \times 10^8 \text{ s}^{-1}$; in TS11, CHO is adsorbed at the bridge-SE site via both C and O atoms, and H is adsorbed at the atop-SE site with the C–H distance of 1.136 Å.

1.2 CH₂ Formation

Five possible pathways with six reactions (**R12~17**) may form CH₂. Our results show that for **R12** (CHO+H \rightarrow CH₂+O), CHO prefers to be hydrogenated to CH₂O, then, CH₂O dissociates into CH₂ and O. Meanwhile, CH₂O hydrogenation to CH₃O (**R18**) has been also considered.

For **R13**, the direct C–O bond cleavage of CH_2O can form CH_2 and O via a transition state TS13, this elementary reaction is endothermic by 9.7 kJ·mol⁻¹ with an activation barrier of 126.7 kJ·mol⁻¹, and the reaction rate constant is 0.89 *s*⁻¹; in TS13, both CH_2 and O species are adsorbed at two adjacent bridge-SE-2 site with the C–O distance of 1.966 Å.

The dissociation of CH₂O with H-assisted (**R14**) leads to the formation of CH₂ and OH species via a transition state TS14, this elementary reaction has an activation barrier of 96.2 kJ·mol⁻¹, and it is slightly endothermic by 9.5 kJ·mol⁻¹ with the reaction rate constant of $1.88 \times 10^3 \text{ s}^{-1}$; in TS14, CH₂O is adsorbed at the atop-SE site, both O and H are adsorbed at the bridge-SE-2 site; the distance between H and O atom is decreased to 0.979 Å from 2.509 Å in CH₂O+H(1).

Similar to CHOH formation, CH₂O hydrogenation to CH₂OH (**R15**) has been firstly investigated. CH₂O can be hydrogenated to form CH₂OH via a transition state TS15 with an activation barrier of 108.3 kJ·mol⁻¹, and this reaction is endothermic by 46.3 kJ·mol⁻¹ with the reaction rate constant of $2.03 \times 10^2 \text{ s}^{-1}$; in TS15, CH₂O and H species are adsorbed at the atop-SE site, the distance between H and O atom is decreased to 1.283 Å from 2.509 Å in CH₂O+H(1).

For **R16**, CH₂OH direct dissociation into CH₂ and OH via a transition state TS16 has an activation barrier of 51.3 kJ·mol⁻¹, and this elementary reaction is exothermic by 36.8 kJ·mol⁻¹ with the reaction rate constant of $3.17 \times 10^7 \text{ s}^{-1}$; in TS16, CH₂ and OH species are adsorbed at the atop-SE and bridge-SE-2 sites, respectively, the distance between C and O atom is decreased to 1.844 Å.

CH₂OH dissociation with H-assisted (**R17**) via TS17 needs an activation barrier of 128.8 kJ·mol⁻¹ with the reaction energy of -7.6 kJ·mol⁻¹, and the reaction rate constant is 0.93 s^{-1} ; in TS17, CH₂ and H are adsorbed at the bridge-SE-2 site, OH is adsorbed at the atop-SE site, the distance between H and O atom is decreased to 1.538 Å from 2.749 Å in CH₂OH+H.

For **R18**, CH₂O can be hydrogenated to form CH₃O via a transition state TS18 with an activation barrier of 29.2 kJ·mol⁻¹, this elementary reaction is slightly endothermic by 3.4 kJ·mol⁻¹ with the reaction rate constant of $2.92 \times 10^{10} s^{-1}$; in TS18, CH₂O adsorbs at the bridge-SE-2 site via C and O atom, and H adsorbs at the atop-SE site with the distances between C and H atom of 1.429 Å.

1.3 CH₃ Formation

Similarly, three possible pathways (R19~21) are responsible for CH_3 formation. CH_3O hydrogenation to CH_3OH (R22) is also considered.

For **R19**, the dissociation of CH₂O with H-assisted leads to the formation of CH₃ and O via a transition state TS19 with an activation barrier of 110.6 kJ·mol⁻¹, and this elementary reaction is exothermic by 12.3 kJ·mol⁻¹ with the reaction rate constant of 6.22 s^{-1} ; in TS19, CH₂ and H adsorb at the atop-SE site, O adsorbs at the bridge-SE-2 site, the distance between C and H atom is 1.116Å.

For **R20**, the direct C–O bond cleavage of CH₃O via a transition state TS20 has an activation barrier of 111.5 kJ·mol⁻¹ with the reaction energy of -15.7 kJ·mol⁻¹, and the reaction rate constant is $4.08 \times 10^2 \ s^{-1}$; in TS20, CH₃ is adsorbed at the atop-SE site, and O is adsorbed at the bridge-SE-2 site with the C–O distance of 1.878 Å.

For **R21**, the dissociation of CH₃O with H-assisted leads to the formations of CH₃ and OH species via a transition state TS21, this elementary reaction has an activation barrier of 92.8 kJ·mol⁻¹, and it is exothermic by 30.5 kJ·mol⁻¹ with the reaction rate constant of $8.95 \times 10^3 \text{ s}^{-1}$; in TS21, CH₃ and H are adsorbed at the atop-SE site, O is adsorbed at the bridge-SE-2 site, and the distance between the C and O is 1.915 Å.

For **R22**, CH₃O hydrogenation to CH₃OH via a transition state TS22 has an activation barrier of 103.5 kJ·mol⁻¹, this elementary reaction is endothermic by 45.1 kJ·mol⁻¹, and the reaction rate constant is $5.01 \times 10^2 \ s^{-1}$. In TS22, CH₃O is adsorbed at the bridge-SE-2 site via O atom, and H is adsorbed at the atop-SE site with the distances between H and O atom of 1.325 Å.

2. The Formations of C₂ Hydrocarbons and Oxygenates

Starting from the most favorable CH_x monomers, CH_2 and CH_3 species, all possible reactions related to CH_2 and CH_3 species including the dissociation, hydrogenation, coupling and CO/CHO insertion have been examined.

Starting from CH₂ species, CH₂ dissociation into CH and H (**R23**) via a transition state TS23 has an activation barrier and reaction energy of 41.1 and 5.8 kJ·mol⁻¹, respectively, and the reaction rate constant is $1.93 \times 10^8 \text{ s}^{-1}$; in TS23, CH is adsorbed at the hollow-2 site, and H is adsorbed at the atop-SE Co site with the C–H distance of 1.633 Å.

CH₂ hydrogenation to CH₃ (**R24**) via a transition state TS24 has an activation barrier of 19.0 kJ·mol⁻¹, and it is exothermic by 25.6 kJ·mol⁻¹ with the reaction rate constant of $6.09 \times 10^{10} s^{-1}$; in TS24, CH₂ is adsorbed at the bridge-SE-2 Co-Cu site, H is adsorbed at the atop-SE Co site; the distance between C and H atom is decreased to 1.705 Å from 2.349 Å in CH₂+H.

For **R25**, CH₂ coupling leads to C₂H₄ via a transition state TS25, this elementary reaction needs an activation barrier of 17.7 kJ·mol⁻¹, and it is strongly exothermic by 104.5 kJ·mol⁻¹ with the reaction rate constant of $1.96 \times 10^{11} \text{ s}^{-1}$; in TS25, both CH₂ are adsorbed at the bridge-SE-2 Co-Cu sites, the distance between two C atom is decreased to 2.219 Å from 2.716 Å in CH₂+CH₂.

For **R26**, CO insertion into CH₂ can form CH₂CO via a transition state TS26, this elementary reaction is slightly endothermic by 12.1 kJ·mol⁻¹ with an activation barrier of 39.9 kJ·mol⁻¹ and the reaction rate constant of $9.07 \times 10^8 \text{ s}^{-1}$; in TS26, CH₂ and CO species are adsorbed at the bridge-SE-2 Co-Cu site and atop-SE Co site, respectively, the distance between C₁ and C₂ atoms is decreased to 1.805 Å from 2.474 Å in CH₂+CO.

For **R27**, CHO insertion into CH_2 to CH_2CHO has an activation barrier of 24.7 kJ·mol⁻¹ with the reaction energy of -91.9 kJ·mol⁻¹, and the reaction rate constant is $4.30 \times 10^{10} s^{-1}$; in TS27, CH_2 and CHO species are adsorbed at the bridge-SE-2 Co-Cu sites with the distance between C₁ and C₂ atoms of 2.025 Å.

Starting from CH_3 species, in **R28**, CH_3 dissociation into CH_2 and H has an activation barrier and reaction energy of 44.6 and 25.6 kJ·mol⁻¹, respectively, and the reaction rate constant is 5.45×10⁷ s⁻¹; TS28 has been presented in the reaction of $CH_2+H\rightarrow CH_3$ (**R23**).

For **R29**, CH₃ hydrogenation can from CH₄ via a transition state TS29, this elementary reaction is slightly exothermic by 0.2 kJ·mol⁻¹ with an activation barrier of 87.3 kJ·mol⁻¹, and the reaction rate constant is $3.23 \times 10^4 \text{ s}^{-1}$; in TS29, CH₃ and H species are adsorbed at the bridge-SE-2 Co-Cu sites; the distance between C and H atom is decreased to 1.477 Å from 2.425 Å in the initial state, CH₃+H.

For **R30**, CH₃ coupling to C₂H₆ via a transition state TS30 has an activation barrier of 156.2 kJ·mol⁻¹, and it is exothermic by 39.4 kJ·mol⁻¹ with the reaction rate constant of $2.41 \times 10^{-2} s^{-1}$; in TS30, one CH₃ is adsorbed at the atop-SE site, the other is pre-adsorbed at the bridge-SE-2 site, the distance of two C atoms is decreased to 2.439 Å.

For **R31**, CO insertion into CH₃ can form CH₃CO via a transition state TS31, this elementary reaction is endothermic by 30.4 kJ·mol⁻¹ with an activation barrier of 83.1 kJ·mol⁻¹, and the reaction rate constant is $1.30 \times 10^5 \text{ s}^{-1}$; in TS31, CH₃ adsorbs at the atop-SE Co site, CO adsorbs at the bridge-SE-2 Co-Cu site, the distance between C₁ and C₂ atom is decreased to 1.833 Å from 2.584 Å in CH₃+CO.

For **R32**, CHO insertion into CH₃ to CH₃CHO has an activation barrier of 41.1 kJ·mol⁻¹ with the reaction energy of -66.8 kJ·mol⁻¹, and the reaction rate constant is $3.56 \times 10^9 \text{ s}^{-1}$; in TS32, CH₃ is adsorbed at the atop-SE Co site, and CHO is adsorbed at the bridge Co-Cu site with the distance between C₁ and C₂ atoms of 1.976 Å.

3. Ethanol Formation

Since CH_2CO and CH_3CO are the dominant C_2 oxygenates, both can be successively hydrogenated to C_2H_5OH .

Starting from CH₂CO, three possible pathways exist. Firstly, CH₂CO hydrogenation to CH₃CO

(**R33**) has an activation barrier of 53.0 kJ·mol⁻¹ with the reaction energy of 13.6 kJ·mol⁻¹, and the rate constant is $4.67 \times 10^7 \ s^{-1}$; in TS33, CH₂CO and H are adsorbed at two adjacent the bridge-SE-2 Co-Cu sites; the distance between C₂ and H atom is decreased to 1.691 Å from 2.699 Å in the initial state, CH₂CO+H(1). Secondly, CH₂CO hydrogenation to CH₂CHO (**R34**) via a transition state TS34, and this elementary reaction needs to overcome an activation barrier of 59.4 kJ·mol⁻¹ with the reaction energy of -0.5 kJ·mol⁻¹, and the rate constant is $3.11 \times 10^6 \ s^{-1}$; in TS34, CH₂CO is adsorbed at the bridge-SE-2 Co-Cu site, and H is adsorbed at the atop-SE Co site; the distance between C₁ and H atom is decreased to 1.339 Å from 2.428 Å in the initial state, CH₂CO+H(1). Thirdly, CH₂CO hydrogenation to CH₂COH (**R35**) via a transition state TS35, and this elementary reaction needs to overcome an activation energy of 69.1 kJ·mol⁻¹, and the rate constant is $3.04 \ s^{-1}$; in TS35, CH₂CO is adsorbed at the atop-SE Co site; the distance between the rate constant is $3.04 \ s^{-1}$; in TS35, CH₂CO is adsorbed at the atop-SE Co site; the distance between O and H atom is decreased to $1.434 \ Å$ from 2.813 Å in the initial state, CH₂CO+H(2).

Based on the kinetic data, CH₂CO prefers to be hydrogenated to CH₂CHO and CH₃CO, thus, CH₂CHO and CH₃CO further hydrogenation have also been further calculated.

Starting from CH₂CHO, there are two possible pathways for hydrogenation. One is CH₂CHO hydrogenation to CH₃CHO (**R36**) via a transition state TS36, and this elementary reaction needs to overcome an activation barrier of 42.9 kJ·mol⁻¹ with the reaction energy of 0.1 kJ·mol⁻¹, and the rate constant is $1.36 \times 10^{10} s^{-1}$; in TS36, CH₂CHO and H are adsorbed at two adjacent bridge-SE-2 Co-Cu sites; the distance between C₂ and H atom is decreased to 1.571 Å from 2.393 Å in the initial state, CH₂CHO+H(1). The other is CH₂CHO hydrogenation to CH₂CHOH (**R37**) via a transition state TS37, which is less favorable than CH₂CHO hydrogenation to CH₃CHO, and this elementary reaction needs to overcome an activation barrier of 94.9 kJ·mol⁻¹ with the reaction energy of 41.4

kJ·mol⁻¹, and the rate constant is $1.84 \times 10^3 \text{ s}^{-1}$; in TS37, CH₂CHO is adsorbed at the bridge-SE-2 Co-Cu site, and H is adsorbed at atop-SE Co site; the distance between O and H atom is decreased to 1.357 Å from 2.685 Å in the initial state, CH₂CHO+H(2).

Starting from CH₃CO, two possible hydrogenation pathways exist. One is CH₃CO hydrogenation to CH₃CHO (**R38**) via a transition state TS38, and this elementary reaction needs to overcome an activation barrier of 57.1 kJ·mol⁻¹ with the reaction energy of -14.0 kJ·mol⁻¹, and the rate constant is $1.16 \times 10^8 \text{ s}^{-1}$; in TS38, CH₃CO is adsorbed at the bridge-SE-2 Co-Cu site, and H species is adsorbed at the atop-SE site; the distance between C₁ and H atom is decreased to 1.157 Å from 2.218 Å in the initial state, CH₃CO+H(1). The other is CH₃CO hydrogenation to CH₃COH (**R39**) via a transition state TS39, which is less favorable than CH₃CO hydrogenation to CH₃CHO, and this elementary reaction needs to overcome an activation barrier of 123.8 kJ·mol⁻¹ with the reaction energy of 58.7 kJ·mol⁻¹, and the rate constant is 6.81 s⁻¹; in TS39, CH₃CO and H are adsorbed at the atop-SE Co site; the distance between O and H atom is decreased to 1.403 Å from 3.064 Å in the initial state, CH₃CO+H(2).

As mentioned above, both CH₂CHO and CH₃CO prefer to be hydrogenated to CH₃CHO. Therefore, CH₃CHO further hydrogenation has also been calculated. CH₃CHO hydrogenation to CH₃CH₂O (**R40**) has an activation barrier of 27.5 kJ·mol⁻¹ with the reaction energy of 10.4 kJ·mol⁻¹, and the rate constant is 1.36×10^{10} s⁻¹, which is much more favorable both thermodynamically and dynamically than CH₃CHO hydrogenation to CH₃CHOH (**R41**) with the activation barrier and reaction energy of 112.8 and 57.1 kJ·mol⁻¹, respectively; in TS37, CH₃CHO is adsorbed at the bridge-SE-1 Co-Cu site, and H is adsorbed at the atop-SE Co site; the distance between C₁ and H atom is decreased to 1.469 Å from 2.692 Å in the initial state, CH₃CO+H(1).

Finally, CH₃CH₂O hydrogenation to ethanol (**R42**) via TS42 is endothermic by 48.6 kJ·mol⁻¹

with an activation barrier of 109.6 kJ·mol⁻¹, and the rate constant is $5.16 \times 10^2 s^{-1}$; in TS38, CH₃CH₂O and H are adsorbed at the atop-SE Co sites; the distance between O and H atom is decreased to 1.419 Å from 2.496 Å in the initial state.

4. Microkinetic modeling

Microkinetic modeling^{1–4} has been widely employed to investigate the activity and selectivity of the catalyst, for example, Liu *et al.*² have proved that the water dissociation, which is considered as the rate-determining step for water-gas-shift reaction, run faster on Au and Cu nanoparticles than their parent bulk surfaces. Liu and Choi⁴ have investigated the formation of ethanol from syngas on Rh(111) surface, suggesting that the productivity and selectivity for ethanol are only controlled by CH₄ formation and the C–C bond formation via CO insertion into CH₃.

As a result, in this study, microkinetic modeling is implemented to probe into the catalytic activity and selectivity of major products in syngas conversion on CoCu(211) surface under the typical experimental conditions (P_{CO} =4 atm, P_{H_2} =8 atm, and T=500~600 K). All elementary reactions involved in the optimal formation pathways of CH₃OH, CH₄ and C₂H₅OH, as well as the corresponding reaction rates at the temperature of 500, 525, 550, 575 and 600 K used for the microkinetic modeling are summarized in Table S1.

Table S1 All elementary reactions involved in the optimal formation pathways of CH_3OH , CH_4 and C_2H_5OH , as well as the corresponding reaction rate constants at the temperature of 500, 525, 550, 575 and 600 K used for the microkinetic modeling.

Elementary Reactions -	Rate constants k (s ⁻¹)						
		500K	525K	550K	575K	600K	
CO(g)+*↔CO*							
$H_2(g) + * \leftrightarrow 2H^*$							
CO*+H*→CHO*+*	<i>k</i> ₃	2.68×10 ⁵	8.50×10 ⁵	1.45×10 ⁶	4.06×10 ⁶	5.94×10 ⁶	

CHO*+H*→CH ₂ O*	k_4	7.14×10 ⁸	1.31×10 ⁹	2.27×10 ⁹	3.76×10 ⁹	5.98×10 ⁹
$CH_2O*+H*{\rightarrow}CH_2*+OH*$	k_5	1.88×10 ³	6.11×10 ³	1.79×10 ⁴	4.81×10 ⁴	1.19×10 ⁵
$CH_2O^{*}\!\!+\!\!H^{*}\!\!\rightarrow\!\!CH_3O^{*}\!\!+\!\!*$	k_6	2.92×10 ¹⁰	4.27×10 ¹⁰	6.06×10 ¹⁰	8.34×10 ¹⁰	1.12×10 ¹¹
$CH_{3}O^{*}\!\!+\!\!H^{*}\!\!\rightarrow\!\!CH_{3}^{*}\!\!+\!OH^{*}$	k_7	8.95×10 ³	2.82×10 ⁴	8.01×10 ⁴	2.08×10 ⁵	5.03×10 ⁵
$\mathrm{CH}_3\mathrm{O}^{*}\!\!+\!\!\mathrm{H}^{*}\!\!\rightarrow\!\!\mathrm{CH}_3\mathrm{OH}(g)\!\!+\!\!2^{*}$	k_8	5.01×10 ²	1.75×10 ³	5.44×10 ³	1.54×10 ⁴	4.00×10 ⁴
$CH_2*+H*{\rightarrow} CH_3*$	k_9	6.09×10 ¹⁰	7.90×10 ¹⁰	1.00×10 ¹¹	1.25×10 ¹¹	1.53×10 ¹¹
$CH_2*+CO*{\rightarrow} CH_2CO*+*$	k_{10}	9.07×10 ⁸	1.49×10 ⁹	2.35×10 ⁹	3.56×10 ⁹	5.22×10 ⁹
$CH_3*+H*{\rightarrow} CH_4(g){+}2*$	k_{11}	3.23×10 ⁴	9.49×10 ⁴	2.54×10 ⁵	6.24×10 ⁵	1.42×10 ⁶
$\mathrm{CH}_3*\!+\!\mathrm{CO}*\!\rightarrow\!\mathrm{CH}_3\mathrm{CO}*\!+\!*$	<i>k</i> ₁₂	1.30×10 ⁵	3.55×10 ⁵	8.90×10 ⁵	2.06×10 ⁶	4.46×10 ⁶
$CH_2CO^{*}\!\!+\!\!H^*\!\!\rightarrow\!\!CH_3CO^{*}\!\!+\!\!*$	<i>k</i> ₁₃	4.67×10 ⁷	9.02×10 ⁷	1.64×10 ⁸	2.85×10 ⁸	4.72×10 ⁸
$CH_2CO^{*}\!\!+\!\!H^*\!\!\rightarrow\!\!CH_2CHO^{*}\!\!+\!\!*$	k_{14}	3.11×10 ⁶	6.38×10 ⁶	1.23×10 ⁷	2.24×10 ⁷	3.89×10 ⁷
$CH_2CHO*+H*{\rightarrow} CH_3CHO*+*$	<i>k</i> ₁₅	1.36×10 ¹⁰	2.36×10 ¹⁰	3.91×10 ¹⁰	6.20×10 ¹⁰	9.49×10 ¹⁰
$CH_{3}CO^{*}\!\!+\!\!H^{*}\!\!\rightarrow\!\!CH_{3}CHO^{*}\!\!+\!\!*$	<i>k</i> ₁₆	1.16×10 ⁸	2.36×10 ⁸	4.52×10 ⁸	8.19×10 ⁸	1.42×10 ⁸
$CH_{3}CHO*+H*{\rightarrow}CH_{3}CH_{2}O*+*$	k_{17}	6.43×10 ¹⁰	9.34×10 ¹⁰	1.31×10 ¹¹	1.80×10 ¹¹	2.40×10 ¹¹
$CH_3CH_2O^{*}+H^{*}\rightarrow C_2H_5OH(g)+2^{*}$	k_{18}	5.16×10 ²	1.93×10 ³	6.43×10 ³	1.93×10 ⁴	5.30×10 ⁴
$OH^{*}+H^{*}\rightarrow H_{2}O(g)+2^{*}$	<i>k</i> ₁₉	9.03×10 ¹	3.44×10 ²	1.16×10 ³	3.55×10 ³	9.87×10 ³

The adsorption reactions of CO and H_2 were assumed in equilibrium. The equilibrium constants were obtained from the below equation:

$$K = \exp\left[-\left(\Delta E_{\rm ads} - T\Delta S\right)/RT\right]$$

Where E_{ads} refers to the adsorption energy of CO or H₂, and ΔS is the entropy change from the gas phase at the reaction temperature, obtained from NIST Chemistry WebBook.⁵

$$\theta_{CO} = P_{CO} K_1 \theta^*$$
$$\theta_H = P_{H_2}^{1/2} K_2^{1/2} \theta^*$$

For the kinetics of surface reactions, we only consider forward reactions, which is a safe approximation at such high partial pressures of CO and H_2 as it is used in experiment.

The rate constants have been presented in Table 3 in the main text. The site balance of

intermediate species included in the reaction mechanism can be written in terms of coverage (θ_X : X

= surface species).

$$\theta_{CO} + \theta_H + \theta_{CHO} + \theta_{CH_2O} + \theta_{CH_2} + \theta_{CH_3O} + \theta_{CH_3} + \theta_{CH_2CO} + \theta_{CH_2CHO} + \theta_{CH_3CO} + \theta_{CH_3CHO} + \theta$$

The surface species including CHO, CH₂O, CH₂, CH₃O, CH₃, CH₂CO, CH₃CO, CH₃CHO, CH₃CH₂O, and OH were described according to the pseudo steady-state approximation,¹ which states that the production rate and consumption rate are equal for all intermediates:

1. CHO:
$$\frac{d\theta_{CHO}}{dt} = k_3 \theta_{CO} \theta_H - k_4 \theta_{CHO} \theta_H = 0$$
(2)

2. CH₂O:
$$\frac{d\theta_{CH_2O}}{dt} = k_4 \theta_{CHO} \theta_H - k_5 \theta_{CH_2O} \theta_H - k_6 \theta_{CH_2O} \theta_H = 0$$
(3)

3. CH₂:
$$\frac{d\theta_{CH_2}}{dt} = k_5 \theta_{CH_2O} \theta_H - k_9 \theta_{CH_2} \theta_H - k_{10} \theta_{CH_2} \theta_{CO} = 0$$
 (4)

4. CH₃O:
$$\frac{d\theta_{CH_3O}}{dt} = k_6 \theta_{CH_2O} \theta_H - k_7 \theta_{CH_3O} \theta_H - k_8 \theta_{CH_3O} \theta_H = 0$$
(5)

5. CH₃:
$$\frac{d\theta_{CH_3}}{dt} = k_7 \theta_{CH_3O} \theta_H + k_9 \theta_{CH_2} \theta_H - k_{11} \theta_{CH_3} \theta_H - k_{12} \theta_{CH_3} \theta_{CO} = 0$$
 (6)

6. CH₂CO:
$$\frac{d\theta_{CH_2CO}}{dt} = k_{10}\theta_{CH_2}\theta_{CO} - k_{13}\theta_{CH_2CO}\theta_H - k_{14}\theta_{CH_2CO}\theta_H = 0$$
(7)

7. CH₂CHO:
$$\frac{d\theta_{CH_2CHO}}{dt} = k_{14}\theta_{CH_2CO}\theta_H - k_{15}\theta_{CH_2CHO}\theta_H = 0$$
(8)

8. CH₃CO:
$$\frac{d\theta_{CH_3CO}}{dt} = k_{12}\theta_{CH_3}\theta_{CO} + k_{13}\theta_{CH_2CO}\theta_H - k_{16}\theta_{CH_3CO}\theta_H = 0$$
 (9)

9. CH₃CHO:
$$\frac{d\theta_{CH_3CHO}}{dt} = k_{15}\theta_{CH_2CHO}\theta_H + k_{16}\theta_{CH_3CO}\theta_H - k_{17}\theta_{CH_3CHO}\theta_H = 0$$
(10)

10. CH₃CH₂O:
$$\frac{d\theta_{CH_3CH_2O}}{dt} = k_{17}\theta_{CH_3CHO}\theta_H - k_{18}\theta_{CH_3CH_2O}\theta_H = 0$$
 (11)

11. OH:
$$\frac{d\theta_{OH}}{dt} = k_5 \theta_{CH_2O} \theta_H + k_7 \theta_{CH_3O} \theta_H - k_{19} \theta_{OH} \theta_H = 0$$
(12)

By putting all of the coverage expressions (equations (2)~(12)) into equation (1), we can calculate the coverage of surface free sites θ^* . Subsequently, the coverage of all intermediates can be obtained.

The rates for each major product (CH₃OH, CH₄ and CH₃CH₂OH) are $r_{CH_3OH} = k_8 \theta_{CH_3O} \theta_H$; $r_{CH_4} = k_{11} \theta_{CH_3} \theta_H$; $r_{CH_3CH_2OH} = k_{18} \theta_{CH_3CH_2O} \theta_H$, respectively.

5. Differential charge density

In order to explain the electronic properties of Cu-Co catalysts, we have investigated the differential charge density of Cu atom over Cu(211) surface, Co atom and its surrounding Cu atoms over CoCu(211) surface. The differential charge density⁶ can be written in equation form as:

$$\Delta \rho = \rho_{\text{full surface}} - \rho_{\text{surface with vacancy}} - \rho_{\text{atom}}$$

Where the $\rho_{\text{full surface}}$ refers to the charge density of Cu atoms of Cu(211) surface and CoCu(211) surface and ρ_{atom} refer to the charge densities of these defective systems and that of the lone Co atom (ρ_{atom}) that is removed, then, it is calculated and compared to the charge densities of the metals without the full surface.

References:

- [1] P. Liu, A. Logadottir, J. K. Nørskov, *Electrochim. Acta*, 2003, 48, 3731–3742.
- [2] P. Liu, J. A. Rodriguez, J. Chem. Phys., 2007, 126, 164705-1-8.
- [3] P. Liu, J. A. Rodriguez, J. Phys. Chem. B, 2006, 110, 19418–19425.
- [4] Y. M. Choi, P. Liu, J. Am. Chem. Soc., 2009, 36, 13054-13061.
- [5] http://webbook.nist.gov/chemistry/.
- [6] G. Collinge, Y. Z. Xiang, R. Barbosa, J. S. McEwen, N. Kruse, Surf. Sci., 2016, 648, 74-83.