Electronic Supplementary Information

Hydrodeoxygenation of Biodiesel-Related Fatty Acid Methyl Esters to

Diesel-Range Alkanes over Zeolite-Supported Ruthenium Catalysts

Jinzhu Chen^{a,*} and Qiyong Xu^{a,b}

^aKey Laboratory of Renewable Energy, Chinese Academy of Sciences. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. Guangzhou 510640, P.R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P.R. China *Corresponding author. Tel./Fax: (+86)-20-3722-3380. E-mail address: <u>chenjz@ms.giec.ac.cn</u> (J. Chen)

· · ·	/	<u>.</u> 	a i	
Entry	Temp.	Time	Conversion	Stearic acid Yield
	[°C]	[h]	[%]	[%]
1	160	8	8.1	0.0
2	180	8	10.7	0.8
3	200	8	66.5	56.1
4	220	8	91.2	85.4
5	240	8	96.9	88.9
6	260	8	97.1	89.1
7	260	12	98.5	90.8
^a Reaction co	onditions: methy	yl stearate (200	mg, 0.67 mmol), HZSM	1-5 (Si/Al = 25), H ₂ O (10 mL),
P _{N2} (3.0 MPa	u).			

Table S1. Hydrolysis of methyl stearate over HZSM-5 in water under nitrogen atmosphere^a

Table S2. Hydrodeoxygenation of methyl stearate over Ru/SiO₂ under hydrogen atmosphere^a

Entry	Reaction	Conversion	Yield [%]			
Епиу	Medium	[%]	Heptadecane	Octadecane	Stearic acid	
1	Water	42.1	3.6	1.0	33.5	
2	Cyclohexane	9.0	0.8	0.0	5.3	
^a Reaction conditions: methyl stearate (200 mg, 0.67 mmol), Ru/SiO ₂ (150 mg, Ru 1.0 wt.%), water						
or cyclohexane (10 mL), T (200 °C), t (8 h), P _{H2} (3.0 MPa).						

Table S3. Hydrolysis of methyl stearate over SiO₂ under nitrogen atmosphere^a

Entry	Reaction	Conversion	Yield [%]				
Enu y	Medium	[%]	Heptadecane	Octadecane	Stearic acid		
1	Water	12.4	0.0	0.0	8.3		
^a Reaction conditions: methyl stearate (200 mg, 0.67 mmol), SiO ₂ (150 mg), water (10 mL), T (200							
°C), t (8 h), P _{N2} (3.0 MPa).							

Table 54. Decarbox yradon of stearte acta over Ku/11251v1-5 under multigen annosphere	Table S4. Decarboxy	vlation of stearic a	acid over Ru/HZSM-5	under nitrogen atm	10sphere ^a
--	---------------------	----------------------	---------------------	--------------------	-----------------------

				0	1
Entry R	Prostion Madium	Temp.	Time	Conversion	Heptadecane Yield
	Reaction Medium	[°C]	[h]	[%]	[%]
1	Water	200	8	3.5	0
2	Water	260	8	5.7	0
3 ^b	Cyclohexane	200	8	22.4	0
4	Cyclohexane	260	8	3.2	0

^a Reaction conditions: stearic acid (200 mg, 0.70 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), water or cyclohexane (10 mL), P_{N2} (3.0 MPa). ^b Trace amount of short chain hydrocarbons rather than heptadecane was observed.

1						
Entry	Reaction	Temp.	Time	Conversion	Benzene Yield	TOFs
Епиу	Medium	[°C]	[h]	[%]	[%]	$[\text{mol}_{\text{Sub}} \text{mol}_{\text{Ru}}^{-1} \text{h}^{-1}]$
1	Water	200	6	27.0	21.9	3.00
2	decalin	200	6	31.9	25.5	3.63
3	Water	260	12	68.1	55.1	/
4	decalin	260	12	61.2	50.1	/

Table S5. Decarbonylation of benzaldehyde to benzene over Ru/HZSM-5 under nitrogen atmosphere^a

^a Reaction conditions: benzaldehyde (106 mg, 1.00 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), water or decalin (10 mL), P_{N2} (3.0 MPa).

Table S6. Decarbonylation of furfural to furan over Ru/HZSM-5 under nitrogen atmosphere^a

Entry	Deastion Madium	Temp.	Time	Conversion	TOFs		
Entry	Reaction Medium	[°C]	[h]	[%]	$[\operatorname{mol}_{\operatorname{Sub}}\operatorname{mol}_{\operatorname{Ru}}^{-1}\operatorname{h}^{-1}]$		
1	Water	220	16	15.2	0.92		
2	Cyclohexane	220	16	20.4	1.28		
^a Reaction conditions: furfural (96 mg, 1.00 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25),							
water or cyclohexane (10 mL), P_{N2} (3.0 MPa).							

Table S7. Hydrodeoxygenation of octadecanol over Ru/HZSM-5 under hydrogen atmosphere^a

Enter	Deastion Madium	Temp.	Time	Conversion	Yield [%]	
Entry Read	Reaction Medium	[°C] [h]		[%]	Heptadecane	Octadecane
1	Water	200	8	38.3	26.5	6.8
2	Water	220	8	100	80.8	11.7
3	Water	260	8	100	79.5	9.6
4	Cyclohexane	200	8	100	70.1	22.0
5	Cyclohexane	220	8	100	62.7	29.7
6	Cyclohexane	240	8	100	49.9	46.0
^a Reaction	on conditions: octaded	canol (200	mg, 0.74	mmol), Ru/HZS	M-5 (150 mg, Ru	1.0 wt.%, Si/Al

= 25), water or cyclohexane (10 mL), P_{H2} (3.0 MPa).

Table S8. Dehydration of octadecanol over HZSM-5 under nitrogen atmosphere^a

Entry	Ponction Modiu	Temp.	Time	Conversion	Octadecene Yield
Entry Re	Reaction Mediu	III [°C]	[h]	[%]	[%]
1	Water	240	8	9.5	1.2
2	Cyclohexane	240	4	23.0	18.9
3	Cyclohexane	240	6	38.2	32.2
4	Cyclohexane	240	8	70.4	69.4
5	Cyclohexane	260	8	97.8	91.3
^a React	ion conditions:	octadecanol (200 mg	g, 0.74 mmol)	, HZSM-5 (S	Si/Al = 25), water or
cyclohe	xane (10 mL), P _N	2 (3.0 MPa).			

Figure S1. Product distributions for the transformation of methyl stearate over Ru/HZSM-5 in aqueous medium as a function of catalyst loading. Reaction conditions: methyl stearate (200 mg, 0.67 mmol), Ru/HZSM-5 (Ru 1.0 wt.%, Si/Al = 25), H₂O (10 mL), P_{H2} (3.0 MPa), t (8 h), T (200 °C).

Figure S2. Product distributions for the transformation of methyl stearate over Ru/HZSM-5 in cyclohexane as a function of methyl stearate conversion. Reaction conditions: methyl stearate (200 mg, 0.67 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), cyclohexane (10 mL), T (260 °C), and P_{H2} (3.0 MPa).

Figure S3. Product distributions for the transformation of stearic acid over Ru/HZSM-5 in cyclohexane as a function of stearic acid conversion. Reaction conditions: stearic acid (200 mg, 0.70 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), cyclohexane (10 mL), P_{H2} (3.0 MPa), T (260 °C).

Figure S4. Powder XRD patterns of the HZSM-5 (Si/Al = 25), Ru/HZSM-5 (Ru 1.0 wt.%, Si/Al = 25) and recovered Ru/HZSM-5 (Ru 0.4 wt.%, Si/Al = 25).

Figure S5. (a) TGA and (b) DTG curve of recovered Ru/HZSM-5 (Si/Al = 25).

Figure S6. (a) XPS scan survey for Ru/HZSM-5 (Ru 1.0 wt.%, Si/Al = 25); (b) Ru3d XPS spectra of Ru/HZSM-5.

Figure S7. GC-MS analysis of octadecanol transformation over Ru/HZSM-5 in water under nitrogen atmosphere: (a) our sample and (b) spectrograms in the database. Reaction conditions: octadecanol (200 mg, 0.74 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), T (220 °C), t (8 h), water (10 mL), P_{N2} (3.0 MPa).

Figure S8. GC-MS analysis of octadecanol transformation over Ru/HZSM-5 in cyclohexane under nitrogen atmosphere. Reaction conditions: octadecanol (200 mg, 0.74 mmol), Ru/HZSM-5 (150 mg, Ru 1.0 wt.%, Si/Al = 25), T (220 °C), t (8 h), cyclohexane (10 mL), P_{N2} (3.0 MPa).