Electronic Supplementary Information

Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

M. Oschatz,^{a,*} T. W. van Deelen,^a J. L. Weber,^a W. S. Lamme,^a G. Wang,^a B. Goderis,^b O. Verkinderen,^b A. I. Dugulan^c and K. P. de Jong^{a,*}

^{a.} Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

^{b.} Polymer Chemistry and Materials, Catholic University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.

^{c.} Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.

*Corresponding authors. M.O. Email: M.Oschatz@uu.nl

K.P.d.J. Email: K.P.deJong@uu.nl

Supplementary Figures

Fig. S1. (A) Nitrogen adsorption/desorption (filled symbols/empty symbols) isotherm (-196°C) as well as (B) BJH pore size distribution calculated from the adsorption branch of the pristine CMK-3 support.

Fig. S2. Mössbauer spectra of (A) the catalysts after calcination and the spent catalysts (FTO at 1 bar for 18 h of TOS) after (B) activation at 350°C and (C) activation at 450°C. The assignment of the fitting curves to different iron species can be found in Table S1.

Fig. S3. TEM image of Fe@CMK-3-1000 after calcination.

Fig. S4. (A) Iron-weight based activity (FTY) over time on stream (TOS) for sodium/sulfur promoted Fe@CMK-3 catalysts under FTO conditions after calcination at different temperatures and activation at 450°C, (B) product selectivity after TOS = 17 h based on hydrocarbons produced, and (C) corresponding ASF plots of the C₁-C₆ product fractions as well as chain growth probability (α) based on the C₂-C₆ products. Data obtained at GHSV = 3600 h⁻¹, H₂/CO = 1, T = 350°C, p = 1 bar.

Fig. S5. TEM images and EDX elemental mapping TEM images of the spent Fe@CMK-3-500 catalyst (FTO at 1 bar) after (A) activation at 350°C (after 20 h TOS) and (B) activation at 450°C (after 17 h TOS). (Iron-red; Oxygen-blue; Carbon-green).

Fig. S6. Nitrogen adsorption/desorption (filled symbols/empty symbols) isotherms (-196°C) of (A) the Fe@CMK-3-300 catalyst and (B) the Fe@CMK-3-1000 catalyst after calcination (circles), after FTO (at 1 bar) with activation at 350°C (squares, TOS = 20 h) or 450°C (triangles, TOS = 17 h).

Fig. S7. Logarithmic plots of the small-angle X-ray scattering curves of (A) the Fe@CMK-3-300 catalyst and (B) the Fe@CMK-3-1000 catalyst after calcination (straight lines), after FTO (at 1 bar) with activation at 350°C (dotted lines, TOS = 20 h), or 450°C (dashed lines, TOS = 17 h).

Fig. S8. ASF plots of the C₁-C₇ product fractions as well as chain growth probability (α) based on the C₃-C₇ products of the sodium/sulfur promoted Fe@CMK-3 catalysts calcined at different temperatures after 100 h TOS under industrially relevant FTO conditions. Data obtained at GHSV = 9600 h⁻¹, H₂/CO = 2, T = 340°C, p = 10 bar.

Supplementary Tables

Table S1. Fitted parameters of the Mössbauer spectra (27°C) of the FTO catalysts after calcination and after 18 h of TOS under FTO conditions (350°C, 1 bar,H₂/CO = 1) after activation at 350 or 450°C. For the Fe@CMK-3-300 and Fe@CMK-3-1000 catalysts, spectra were also acquired after activation without exposure to synthesis gas.

Material	IS (mm/s)	QS (mm/s)	Hyperfine field (T)	Г (mm/s)	Phase	Spectral contribution (%)	
Fe@CMK-3-300 Calcined	0.35	0.81	-	0.72	Fe ³⁺ (red)	100	
Fe@CMK-3-300	0.22	0.30	-	0.42	Fe _x C (SPM ^a)	15	
activated 350°C	1.07	0.38	-	0.82	Fe ²⁺	85	
	0.21	-	20.2	0.44	Fe _x C	8	
Fe@CMK-3-300	0.22	-	-	0.74	Fe _x C (SPM)	17	
activated 450°C	0.00	-	32.9	0.37	Fe ⁰	34	
	1.08	0.72	-	0.63	Fe ²⁺	41	
	0.20	0.47	-	0.75	Fe _x C (SPM) (red)	37	
Fe@CMK-3-300	0.27	-	21.4	0.56	χ-Fe₅C₂ (I) (magenta)	13	
activated 350°C	0.23	-	17.4	0.55	χ-Fe ₅ C ₂ (II) (violet)	12	
after 18 h TOS	0.21	-	9.9	0.56	χ-Fe₅C₂ (III) (wine)	10	
	1.02	0.38	-	0.70	Fe ²⁺ (dark cyan)	28	

	0.17	0.50	-	0.64	Fe _x C (SPM) (red)	29
Fe@CMK-3-300	0.27	-	21.9	0.48	x-Fe ₅ C ₂ (I) (magenta)	20
activated 450°C	0.22	-	17.7	0.44	x-Fe ₅ C ₂ (II) (violet)	18
after 18 h TOS	0.21	-	9.4	0.48	x-Fe ₅ C ₂ (III) (wine)	21
	0.91	-	-	0.71	Fe ²⁺ (dark cvan)	12
	0.36	0.73	-	0.76	Fe ³⁺ (red)	42
Fe@CMK-3-500	0.35	-	-	7.10	Fe ³⁺ (magenta)	48
Calcined	0.35	0.05	45.6	1.40	Fe ³⁺ (violet)	10
	0.17	0.35	-	0.59	Fe _v C (SPM) (red)	16
Fe@CMK-3-500	0.27	-	21.8	0.45	x-Fe ₅ C ₂ (I) (magenta)	9
activated 350°C	0.21	-	18.0	0.45	x-Fe _c C ₂ (II) (violet)	7
after 18 h TOS	0.22	-	10.0	0.45	x-Fe ₅ C ₂ (III) (wine)	12
	1.05	0.20	-	0.84	Fe ²⁺ (dark cvan)	56
	0.20	0.56	-	0.77	Fe.C (SPM) (red)	49
Fe@CMK-3-500	0.28	-	21.9	0.43	x-Fe ₅ C ₂ (I) (magenta)	13
activated 450°C	0.27	-	17.7	0.49	x-Fe₅C₂ (II) (violet)	15
after 18 h TOS	0.16	-	98	0.43	χ -Fe ₂ C ₂ (III) (wine)	12
	1.06	0.35	-	0.71	Fe ²⁺ (dark cvan)	11
	0.34	0.82	-	0.83	Fe ³⁺ (red)	52
	0.28	0.02	48 5	0.85	Fe ³⁺ (magenta)	11
Fe@CMK-3-800	0.00	-	32.9	0.34	Fe ⁰ (cvan)	17
Calcined	-0.08	-	-	0.30	Fe ⁰ (SPM) (blue)	7
	0.00	-	20.8	0.84	Fe.C (olive)	14
	0.20	0.79	-	0.84	Fe C (SPM) (red)	16
Fe@CMK-3-800	0.27	-	21.8	0.49	v-Fe ₂ C ₂ (I) (magenta)	24
activated 350°C	0.23	_	17.7	0.15	$v_{-}Fe_{-}C_{2}$ (II) (violet)	23
after 18 h TOS	0.23	-	97	0.32	χ Fe ₅ C ₂ (III) (wine)	23
	1.06	-	-	0.89	Fe ²⁺ (dark cvan)	15
	0.26	0.73	-	0.84	Fe.C (SPM) (red)	35
Fe@CMK-3-800	0.28	-	21.9	0.46	x-Fe ₂ C ₂ (I) (magenta)	23
activated 450°C	0.25	-	17.7	0.52	x-Fe₅C₂ (II) (violet)	21
after 18 h TOS	0.17	-	9.6	0.46	χ -Fe ₅ C ₂ (III) (wine)	21
	0.38	0.76	-	0.83	Fe ³⁺ (red)	25
	0.31	0.00	48.8	0.78	Fe ³⁺ (magenta)	13
Fe@CMK-3-1000	0.00	-	33.1	0.39	Fe ⁰ (cvan)	15
Calcined	-0.09	-	-	0.34	Fe ⁰ (blue) (SPM)	35
	0.18	-	20.6	0.69	Fe _v C (olive)	12
Fe@CMK-3-1000	0.00	-	33.0	0.36	Fe ⁰	71
activated 350°C	-0.08	-	-	0.38	Fe ⁰ (SPM)	29
Fe@CMK-3-1000	0.00	-	32.9	0.40	Fe ⁰	70
activated 450°C	-0.08	-	-	0.40	Fe ⁰ (SPM)	30
	0.28	0.76	-	0.61	Fe _x C (SPM) (red)	8
	0.26	-	21.6	0.47	χ -Fe ₅ C ₂ (I) (magenta)	29
Fe@CMK-3-1000	0.23	-	17.8	0.58	χ -Fe ₅ C ₂ (II) (violet)	31
activated 350°C	0.18	-	10.0	0.47	χ -Fe ₅ C ₂ (III) (wine)	20
after 18 h TOS	0.00	-	33.0	0.29	Fe ⁰ (cyan)	4
	-0.10	-	-	0.44	Fe ⁰ (SPM) (blue)	8
	0.28	0.59	-	0.60	Fe _v C (SPM) (red)	14
	0.27	-	21.9	0.48	χ -Fe ₅ C ₂ (I) (magenta)	26
Fe@CMK-3-1000	0.24	-	17.9	0.54	χ -Fe ₅ C ₂ (II) (violet)	23
activated 450°C	0.17	-	9.7	0.48	χ -Fe ₅ C ₂ (III) (wine)	22
after 18 h TOS	0.00	-	33.0	0.31	Fe ⁰ (cvan)	5
	-0.11	-	-	0.43	Fe ^o (SPM) (blue)	10

^a SPM: superparamagnetic (in very small nanoparticles).

Experimental uncertainties: Isomer shift: I.S. \pm 0.01 mm/s; Quadrupole splitting: Q.S. \pm 0.01 mm/s; Line width: $\Gamma \pm 0.01$ mm/s; Hyperfine field: \pm 0.1 T; Spectral contribution: \pm 3%.

Table S2. CO conversion, catalytic activity, and product selectivity of the CMK-3-supported FTO catalysts calcined and activated at different temperatures. Data obtained at 350°C, 1 bar, H_2 /CO ratio = 1, GHSV = 3600 h⁻¹, TOS = 17 h). The differences to 100%_C in hydrocarbons were detected as oxygenates.

	со	FTY (10 ⁻⁵ mol _{CO} /g _{Fe} ·s)	Product Selectivity (% _c)			
Catalyst	conversion (%)		CH4	C ₂ -C ₄ Olefins	C ₂ -C ₄ Paraffins	C ₅₊
Fe@CMK-3-300- A350	0.40	0.29	12.5	59.0	2.6	25.6
Fe@CMK-3-500- A350	1.04	0.69	8.2	61.6	1.5	28.7
Fe@CMK-3-800- A350	1.82	1.03	7.8	58.9	1.6	31.7
Fe@CMK-3-1000- A350	1.17	0.60	7.8	58.7	1.5	31.9
Fe@CMK-3-300- A450	5.00	3.91	14.9	61.2	3.4	20.6
Fe@CMK-3-500- A450	2.18	1.34	10.7	62.5	1.6	25.5
Fe@CMK-3-800- A450	7.28	3.72	12.7	57.6	2.7	26.9
Fe@CMK-3-1000- A450	1.39	0.77	7.9	58.2	1.4	32.5