Supporting information

Ethanol Gas-Phase Ammoxidation to Acetonitrile: the Reactivity of Supported Vanadium Oxide Catalysts

Catalyst	T (°C)	Alcohol	Alcohol/H ₂ O/NH ₃ /O ₂	Alcohol conv.,	Main	Ref
	(GP/LP)		(molar ratios)	RCN yield (%)	byproducts	
MnO_2	100, LP	Benzyl	0.5 mmol//	100, 100	-	25
		alcohol	0.85MPa/0.5MPa			
Co ₃ O ₄	100, LP	Benzyl	0.5 mmol//	96, 94	-	25
		alcohol	0.85MPa/0.5MPa			
V/P/Sb/O-	400, GP	Ethanol	Ethanol/water ¹ / ₂ v/v;	84, 82	acetaldehyde	33
Al_2O_3			NH ₃ /air 2.1/1			
SAPO	350, GP	Ethanol	1/1/5/air	100, 99	-	31
VAPO	350, GP	Ethanol	1/1/5/air	100, 96.5*	acetaldehyde	32
Ru(OH) ₃ -	120, LP	Benzyl	NH ₃ /alcohol 1.8/1;	-, 72		29
Al_2O_3		alcohol	air 6 bar			

Table S1. Catalytic ammoxidation of alcohols in gas and liquid phase.

* We were not able to reproduce these results

Table S2. Porosimetry of catalysts.

Sample	BET (m ² /g)	VO _x surface	t-Plot Micropore Area
		density (nm ⁻²)*	(m²/g)
TiO ₂	22,0		9,5
ZrO ₂	26,5		0,6
V/Ti/O	21,3	21,8	4,6
V/Zr/O	24,2	19,1	1,9

*The VOx surface density was calculated according to the following equation:

$$n_{\rm S}({\rm VO_x\,nm^{-2}}) = rac{c_{\rm W}N_{\rm A}}{M_{\rm W}S_{\rm BET} \times 10^{18}({\rm nm^2/m^2})}.$$

In the above equation, c_w (g/g) is the Vanadium content of catalysts, N_A the Avogadro's number $(6.022 \times 10^{23} \text{ mol}^{-1})$, M_w the molecular weight of Vanadium (50.94 g mol⁻¹) and S_{BET} (m² g⁻¹) is the surface area of the catalysts.

Figure S1. TPR profiles of V/Ti/O (top) and V/Zr/O (bottom) catalysts, and profiles of two reference catalysts prepared by mixing and calcination of 7 wt% V_2O_5 with bare supports.

Figure S2. Effect of temperature on reactant conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.1 g s mL⁻¹, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen 5/13/6. Symbols: ethanol conversion (O), ammonia conversion (\blacksquare) and oxygen conversion (\bigcirc). Selectivity to: acetonitrile (\circledast), acetaldehyde (\bigcirc), ethylene (\square), CO (P), CO₂ (Q), HCN (\bigcirc) and N₂ (calculated with respect to converted ammonia) (P). Catalyst V/Zr/O.

Figure S3. Effect of temperature on reactant conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.1 g s mL⁻¹, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen 10/12/10. Symbols: ethanol conversion (O), ammonia conversion (O) and oxygen conversion (O). Selectivity to: acetonitrile (\circledast), acetaldehyde (O), ethylene (\Box), CO (\thickapprox), CO₂ (O), HCN (O) and N₂ (calculated with respect to converted ammonia) (\bowtie). Catalyst V/Zr/O.

Figure S4. Effect of temperature on reactant conversion (top figure) and on selectivity to products (bottom figure). Reaction conditions: W/F ratio 0.8 g s mL⁻¹, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen/inert 5/13/13/69. Symbols: ethanol conversion (O), ammonia conversion (O) and oxygen conversion (O). Selectivity to: acetonitrile (\circledast), acetaldehyde (O), ethylene (\Box), CO (O), CO₂ (O), HCN (O) and N₂ (calculated with respect to converted ammonia) (SD). Catalyst V/Ti/O.

Figure S5. Effect of conversion on selectivity to products. Reaction conditions: temperature 320°C, feed composition (molar %): ethanol (azeotrope)/ammonia/oxygen 1.4/3.6/1.7. Contact time was varied. Symbols: Selectivity to: acetonitrile (*), acetaldehyde (\bigcirc), ethylene (\square), CO (\succcurlyeq), CO₂ (\bigotimes), HCN (\bigcirc) and N₂ (calculated with respect to converted ammonia) (\bowtie). Catalyst V/Ti/O.

Figure S6. Raman spectra recorded while heating samples under an ethanol/He feed. Catalysts: V/Zr/O (top) and V/Ti/O (bottom).

Figure S7. Raman spectra recorded at 400°C in N_2 flow after recording of spectra reported in Figure S6. Catalysts: V/Zr/O (top) and V/Ti/O (bottom).

Figure S8. Raman spectra (recorded at 130°C) of used V/Zr/O (top) and V/Ti/O (bottom) catalysts after experiments carried out with ethanol/air feed.

Figure S9. Detail of the DRIFT spectra recorded at 350°C for V/Ti/O (bottom) and V/Zr/O (top) catalysts after adsorption of ethanol.